cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100706 Bisection of A002275.

Original entry on oeis.org

1, 111, 11111, 1111111, 111111111, 11111111111, 1111111111111, 111111111111111, 11111111111111111, 1111111111111111111, 111111111111111111111, 11111111111111111111111
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Comments

Also the binary representation of the n-th iteration of the elementary cellular automaton starting with a single ON (black) cell for Rules 151, 159, 183, 191, 215, 222, 223, 247, 254 and 255. - Robert Price, Feb 21 2016
The aerated sequence 1, 0, 111, 0, 11111, 0, 1111111, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = -9^2, Q = -10 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A299960. - Peter Bala, Aug 28 2019

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A002275, A099814 (other bisection), A007583, A095372, A299960.

Programs

  • Maple
    seq((10^(2*n+1) - 1)/9,n=0..15); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
  • Mathematica
    Table[(10^(2*n + 1) - 1)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
  • PARI
    a(n) = (10^(2*n + 1) - 1)/9; \\ Michel Marcus, Mar 12 2023
  • Python
    def A100706(n): return (10**((n<<1)+1)-1)//9 # Chai Wah Wu, Nov 04 2022
    

Formula

Numbers composed entirely of 2*n+1 concatenated 1's for n >= 0.
O.g.f.: (1+10*x)/((-1+x)*(-1+100*x)). - R. J. Mathar, Apr 03 2008
From Klaus Purath, Sep 23 2020: (Start)
a(n) = Sum_{i = 0..2*n} 10^i.
a(n) = 101*a(n-1) - 100*a(n-2).
a(n) = 110*10^(2*n-2) + a(n-1).
a(n) = 100*a(n-1) + 11.
a(n) = (a(n-1)^2 - 1210*10^(2*n-4))/a(n-2). (End)

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005