A100706 Bisection of A002275.
1, 111, 11111, 1111111, 111111111, 11111111111, 1111111111111, 111111111111111, 11111111111111111, 1111111111111111111, 111111111111111111111, 11111111111111111111111
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (101,-100).
Programs
-
Maple
seq((10^(2*n+1) - 1)/9,n=0..15); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
-
Mathematica
Table[(10^(2*n + 1) - 1)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
-
PARI
a(n) = (10^(2*n + 1) - 1)/9; \\ Michel Marcus, Mar 12 2023
-
Python
def A100706(n): return (10**((n<<1)+1)-1)//9 # Chai Wah Wu, Nov 04 2022
Formula
Numbers composed entirely of 2*n+1 concatenated 1's for n >= 0.
O.g.f.: (1+10*x)/((-1+x)*(-1+100*x)). - R. J. Mathar, Apr 03 2008
From Klaus Purath, Sep 23 2020: (Start)
a(n) = Sum_{i = 0..2*n} 10^i.
a(n) = 101*a(n-1) - 100*a(n-2).
a(n) = 110*10^(2*n-2) + a(n-1).
a(n) = 100*a(n-1) + 11.
a(n) = (a(n-1)^2 - 1210*10^(2*n-4))/a(n-2). (End)
Extensions
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
Comments