cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100716 Numbers k such that p^p divides k for some prime p.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212
Offset: 1

Views

Author

Leroy Quet, Dec 10 2004

Keywords

Comments

Complement of A048103; A129251(a(n)) > 0; A051674 is a subsequence; A129254 = (terms a(k) such that a(k+1)=a(k)+1). - Reinhard Zumkeller, Apr 07 2007
A027748(a(n),k) <= A124010(a(n),k) for some k<=A001221(a(n)). - Reinhard Zumkeller, Apr 28 2012

Examples

			54 is included because 3^3 divides 54.
		

Crossrefs

Complement: A048103.
Positions of nonzeros in A129251.
Cf. A054744.
Cf. A051674 (a subsequence).
Subsequence of A276079 from which it differs for the first time at n=175, where a(175) = 628, while A276079(175) = 625, a value missing from here.

Programs

  • Haskell
    a100716 n = a100716_list !! (n-1)
    a100716_list = filter (\x -> or $
       zipWith (<=) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A100716 (NONZERO-POS 1 1 A129251))
    ;; Antti Karttunen, Aug 18 2016
    
  • Mathematica
    fQ[n_] := Union[ Table[ #[[1]] <= #[[2]]] & /@ FactorInteger[n]][[ -1]] == True; Select[ Range[2, 215], fQ[ # ] &] (* Robert G. Wilson v, Dec 14 2004 *)
    f[n_] := Module[{aux=FactorInteger[n]}, Last@Union@Table[aux[[i,1]] <=  aux[[i,2]], {i,Length[aux]}] == True]; Select[Range[2,215], f] (* José María Grau Ribas, Jan 25 2012 *)
    Rest@ Select[Range@ 216, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] == 0 &] (* Michael De Vlieger, Aug 19 2016 *)
  • PARI
    is(n)=forprime(p=2,default(primelimit),if(n%p^p==0,return(1));if(p^p>n,return(0))) \\ Charles R Greathouse IV, Jan 24 2012
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A100716_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:any(map(lambda d:d[1]>=d[0],factorint(n).items())),count(max(startvalue,1)))
    A100716_list = list(islice(A100716_gen(),30)) # Chai Wah Wu, Jan 05 2023

Formula

a(n) ~ k*n with k = 1/(1 - Product(1 - p^-p)) = 3.5969959469... where the product is over all primes p. - Charles R Greathouse IV, Jan 24 2012

Extensions

More terms from Robert G. Wilson v, Dec 14 2004