A100878 Smallest number of pentagonal numbers which sum to n.
0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 1, 2, 3, 3, 4, 2, 3, 4, 4, 5, 1, 2, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 2, 3, 3, 2, 3, 3, 4, 1, 2, 3, 4, 5, 2, 2, 3, 3, 4, 3, 3, 2, 3, 4, 3, 4, 3, 3, 1, 2, 3, 2, 3, 2, 3, 4, 3, 3, 3, 4, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 1, 2, 3, 3, 4, 2, 3, 4, 4, 4, 2, 3, 2
Offset: 0
Keywords
Examples
a(5)=1 since 5=5, a(6)=2 since 6=1+5, a(7)=3 since 7=1+1+5, a(10)=2 since 10=5+5 with 1 and 5 pentagonal numbers.
References
- Elena Deza and Michel Marie Deza, Fermat's polygonal number theorem, Figurate numbers, World Scientific Publishing (2012), Chapter 5, pp. 313-377.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section D3, Figurate numbers, pp. 222-228.
Links
- Augustin-Louis Cauchy, Démonstration du théorème général de Fermat sur les nombres polygones, Extrait des Mémoires de l'Institut, 1813-15.
- Eric Weisstein's World of Mathematics, Fermat's Polygonal Number Theorem.
- Wikipedia, Fermat polygonal number theorem.
Crossrefs
Programs
-
PARI
a(n) = my(nb=oo); forpart(vp=n, if (vecsum(apply(x->ispolygonal(x, 5), Vec(vp))) == #vp, nb = min(nb, #vp)),,5); nb; \\ Michel Marcus, Jul 15 2022
-
PARI
a(n) = for(i = 1, oo, p = partitions(n, , [i,i]); for(j = 1, #p, if(sum(k = 1, i, ispolygonal(p[j][k],5)) == i, return(i)))) \\ David A. Corneth, Jul 15 2022
Formula
a(n) <= 5 (inequality proposed by Fermat and proved by Cauchy). - Bernard Schott, Jul 13 2022
Extensions
More terms from David Wasserman, Mar 04 2008
Comments