A100881 Number of partitions of n in which the sequence of frequencies of the summands is decreasing.
1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 8, 9, 13, 10, 13, 15, 16, 18, 21, 17, 24, 28, 26, 26, 36, 32, 38, 42, 40, 46, 52, 48, 63, 63, 59, 63, 85, 77, 81, 92, 89, 102, 116, 98, 122, 134, 130, 140, 157, 145, 165, 182, 190, 191, 207, 195, 235, 259, 232, 252, 293, 279
Offset: 0
Keywords
Examples
a(7) = 4 because in each of the four partitions [7], [3,3,1], [2,2,2,1], [1,1,1,1,1,1,1] the frequency with which a summand is used decreases as the summand decreases.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a100881 = p 0 0 1 where p m m' k x | x == 0 = if m > m' || m == 0 then 1 else 0 | x < k = 0 | m == 0 = p 1 m' k (x - k) + p 0 m' (k + 1) x | otherwise = p (m + 1) m' k (x - k) + if m > m' then p 0 m (k + 1) x else 0 -- Reinhard Zumkeller, Dec 27 2012
-
Maple
b:= proc(n, i, t) option remember; if n<0 then 0 elif n=0 then 1 elif i=0 then 0 else b(n, i-1, t) +add(b(n-i*j, i-1, j), j=1..min(t-1, floor(n/i))) fi end: a:= n-> b(n, n, n+1): seq(a(n), n=0..60); # Alois P. Heinz, Feb 21 2011
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==0, 0, True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, 1, Min[t-1, Floor[n/i]]}]]; a[n_] := b[n, n, n+1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Feb 21 2011