A100934 Numbers having more than one representation as the product of consecutive integers.
6, 24, 120, 210, 720, 5040, 40320, 175560, 362880, 3628800, 17297280, 19958400, 39916800, 259459200, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 20274183401472000, 121645100408832000
Offset: 1
Keywords
Examples
120 is a term since 120 = 1*2*3*4*5 = 2*3*4*5 = 4*5*6. 210 is a term since 210 = 14*15 = 5*6*7. Other non-factorial terms are: 175560 = Product_{i=55..57} i = Product_{i=19..22} i, 17297280 = Product_{i=63..66} i = Product_{i= 8..14} i, 19958400 = Product_{i= 5..12} i = Product_{i= 3..11} i, 259459200 = Product_{i= 8..15} i = Product_{i= 5..13} i, 20274183401472000 = Product_{i=6..20} i = Product_{i=4..19} i.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..26
- H. L. Abbott, P. Erdos and D. Hanson, On the numbers of times an integer occurs as a binomial coefficient, Amer. Math. Monthly, (March 1974), 256-261.
Programs
-
Mathematica
nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]-1}]; Union[lst]
-
Python
import heapq def aupton(terms, verbose=False): p = 1*2; h = [(p, 1, 2)]; nextcount = 3; alst = []; oldv = None while len(alst) < terms: (v, s, l) = heapq.heappop(h) if v == oldv and v not in alst: alst.append(v) if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i = Prod_{{i = {olds}..{oldl}}} i]") if v >= p: p *= nextcount heapq.heappush(h, (p, 1, nextcount)) nextcount += 1 oldv, olds, oldl = v, s, l v //= s; s += 1; l += 1; v *= l heapq.heappush(h, (v, s, l)) return alst print(aupton(20, verbose=True)) # Michael S. Branicky, Jun 24 2021
Extensions
a(18) and beyond from Michael S. Branicky, Jun 24 2021
Comments