A100936 Symmetric square array, read by antidiagonals, where the inverse binomial transform of row n equals: [C(n,0)*1, C(n,1)*2,..., C(n,k)*A051163(k), ..., C(n,n)*A051163(n)] and where A051162 equals the antidiagonal sums.
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 28, 28, 9, 1, 1, 11, 47, 76, 47, 11, 1, 1, 13, 71, 163, 163, 71, 13, 1, 1, 15, 100, 301, 435, 301, 100, 15, 1, 1, 17, 134, 502, 971, 971, 502, 134, 17, 1, 1, 19, 173, 778, 1909, 2577, 1909, 778, 173, 19, 1, 1, 21, 217, 1141
Offset: 0
Examples
Rows begin: [1,1,1,1,1,1,1,1,1,...], [1,3,5,7,9,11,13,15,17,...], [1,5,14,28,47,71,100,134,...], [1,7,28,76,163,301,502,778,...], [1,9,47,163,435,971,1909,3417,...], [1,11,71,301,971,2577,5917,12167,...], [1,13,100,502,1909,5917,15678,36744,...], [1,15,134,778,3417,12167,36744,97272,...],... Antidiagonal sums form A051163: [1,2,5,12,30,76,194,496,1269,3250,8337,...]. The inverse binomial transform of the rows form the respective rows of the triangle B: [1*1], [1*1,1*2], [1*1,2*2,1*5], [1*1,3*2,3*5,1*12], [1*1,4*2,6*5,4*12,1*30],... where B(n,k) = binomial(n,k)*A051163(k).
Programs
-
PARI
T(n,k)=if(n==0 || k==0,1, sum(j=0,n,binomial(k,j)*binomial(n,j)*sum(i=0,j,T(j-i,i)));)
Comments