cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100982 Number of admissible sequences of order j; related to 3x+1 problem and Wagon's constant.

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 30, 85, 173, 476, 961, 2652, 8045, 17637, 51033, 108950, 312455, 663535, 1900470, 5936673, 13472296, 39993895, 87986917, 257978502, 820236724, 1899474678, 5723030586, 12809477536, 38036848410, 84141805077, 248369601964
Offset: 1

Views

Author

Steven Finch, Jan 13 2005

Keywords

Comments

Eric Roosendaal counted all admissible sequences up to order j=1000 (2005). Note: there is a typo in both Wagon and Chamberland in the definition of Wagon's constant 9.477955... The expression floor(1 + 2*i + i*log_2(3)) should be replaced by floor(1 + i + i*log_2(3)).
The length of all admissible sequences of order j is A020914(j). - T. D. Noe, Sep 11 2006
Conjecture: a(n) is given for each n > 3 by a formula using a(2)..a(n-1). This allows us to create an iterative algorithm which generates a(n) for each n > 6. This has been proved for each n <= 53. For higher values of n the algorithm must be slightly modified. - Mike Winkler, Jan 03 2018
Theorem 1: a(k) is given for each k > 1 by a formula using a(1)..a(k-1). Namely, a(1)=1 and a(k+1) = Sum_{m=1..k} (-1)^(m-1)*binomial(floor((k-m+1)*(log(3)/log(2))) + m - 1, m)*a(k-m+1) for k >= 1. - Vladimir M. Zarubin, Sep 25 2015
Theorem 2: a(n) can be generated for each n > 2 algorithmically in a Pascal's triangle-like manner from the two starting values 0 and 1. This result is based on the fact that the Collatz residues (mod 2^k) can be evolved according to a binary tree. There is a direct connection with A076227, A056576 and A022921. - Mike Winkler, Sep 12 2017
A177789 shows another theorem and algorithm for generating a(n). - Mike Winkler, Sep 12 2017

Examples

			The unique admissible sequence of order 1 is 3/2, 1/2.
The unique admissible sequence of order 2 is 3/2, 3/2, 1/2, 1/2.
The two admissible sequences of order 3 are 3/2, 3/2, 3/2, 1/2, 1/2 and 3/2, 3/2, 1/2, 3/2, 1/2.
a(13) = 8045 = binomial(floor(5*(13-2)/3), 13-2)
- Sum_{i=2..6} binomial(floor((3*(13-i)+0)/2), 13-i)*a(i)
- Sum_{i=7..11} binomial(floor((3*(13-i)-1)/2), 13-i)*a(i)
- Sum_{i=12..12} binomial(floor((3*(13-i)-2)/2), 13-i)*a(i)
= 31824 - 4368*1 - 3003*2 - 715*3 - 495*7 - 120*12 - 28*30 - 21*85 - 5*173 - 4*476 - 1*961 - 0*2652. (Conjecture)
From _Mike Winkler_, Sep 12 2017: (Start)
The next table shows how Theorem 2 works. No entry is equal to zero.
n =       3  4  5   6   7   8   9  10  11   12 .. |A076227(k)=
--------------------------------------------------|
k =  2 |  1                                       |     1
k =  3 |  1  1                                    |     2
k =  4 |     2  1                                 |     3
k =  5 |        3   1                             |     4
k =  6 |        3   4   1                         |     8
k =  7 |            7   5   1                     |    13
k =  8 |               12   6   1                 |    19
k =  9 |               12  18   7   1             |    38
k = 10 |                   30  25   8   1         |    64
k = 11 |                   30  55  33   9    1    |   128
:      |                        :   :   :    : .. |    :
--------------------------------------------------|---------
a(n) =    2  3  7  12  30  85 173 476 961 2652 .. |
The entries (k,n) in this table are generated by the rule (k+1,n) = (k,n) + (k,n-1). The last value of (k+1,n) is given by k+1 = A056576(n-1), or the highest value in column n is given twice only if A022921(n-2) = 2. Then a(n) is equal to the sum of the entries in column n. For n = 7 there is 1 = 0 + 1, 5 = 1 + 4, 12 = 5 + 7, 12 = 12 + 0. Therefore a(7) = 1 + 5 + 12 + 12 = 30. The sum of row k is equal to A076227(k). (End)
From _Ruud H.G. van Tol_, Dec 04 2023: (Start)
A tree view.
n-tree--A098294--ids-----paths-----------------a(n)
0 ._          0  0       0                       -
1 |_          1  1       10                      1
2 |_._        2  2       1100                    1
3 |_|_        2  3-4     11010     -   11100     2
4 |_|_._      3  5-7     1101100   -  1111000    3
5 |_|_|_      3  8-14    11011010  - 11111000    7
6 |_|_|_._    4  15-26   1101101100-1111110000  12
7 |_|_|_|_._  5  27-56   ...                    30
8 |_|_|_|_|_  5  57-141  ...                    85
...
For n>=1, the endpoints are at A098294(n) to the right.
(End)
		

Crossrefs

Cf. A122790 (Wagon's constant), A076227, A056576, A022921, A098294, A177789.

Programs

  • Mathematica
    (* based on Eric Roosendaal's algorithm *) nn=100; Clear[x,y]; Do[x[i]=0, {i,0,nn+1}]; x[1]=1; t=Table[Do[y[cnt]=x[cnt]+x[cnt-1], {cnt,p+1}]; Do[x[cnt]=y[cnt], {cnt,p+1}]; admis=0; Do[If[(p+1-cnt)*Log[3]T. D. Noe, Sep 11 2006 *)
  • PARI
    /* translation of the above code from T. D. Noe */
    {limit=100; n=1; x=y=vector(limit+1); x[1]=1; for(b=2, limit, for(c=2, b+1, y[c]=x[c]+x[c-1]); for(c=2, b+1, x[c]=y[c]); a_n=0; for(c=1, b+1, if((b+1-c)*log(3)Mike Winkler, Feb 28 2015
    
  • PARI
    /* algorithm for the Conjecture */
    {limit=53; zn=vector(limit); zn[2]=1; zn[3]=2; zn[4]=3; zn[5]=7; zn[6]=12; f=1; e1=-1; e2=-2; for(n=7, limit, m=floor((n-1)*log(3)/log(2))-(n-1); j=(m+n-2)!/(m!*(n-2)!); if(n>6*f, if(frac(n/2)==0, e=e1, e=e2)); if(frac((n-6 )/12)==0, f++; e1=e1+2); if(frac((n-12)/12)==0, f++; e2=e2+2); Sum=a=b=0; c=1; d=5; until(c>=n-1, for(i=2+a*5+b, 1+d+a*5, if(i>11 && frac((i+2)/6)==0, b++); delta=e-a; Sum=Sum+binomial(floor((3*(n-i)+delta)/2),n-i)*zn[i]; c++); a++; for(k=3, 50, if(n>=k*6 && a==k-1, d=k+3))); zn[n]=j-Sum; print(n" "zn[n]))} \\ Mike Winkler, Jan 03 2018
    
  • PARI
    /* cf. code for Theorem 2 */
    {limit=100; /*or limit>100*/ p=q=vector(limit); c=2; w=log(3)/log(2); for(n=3, limit, p[1]=Sum=1; for(i=2, c, p[i]=p[i-1]+q[i]; Sum=Sum+p[i]); a_n=Sum; print(n" "a_n); for(i=1, c, q[i]=p[i]); d=floor(n*w)-floor((n-1)*w); if(d==2, c++)); } \\ Mike Winkler, Apr 14 2015
    
  • PARI
    /* algorithm for Theorem 1 */
    n=20; a=vector(n); log32=log(3)/log(2);
    {a[1]=1; for ( k=1, n-1, a[k+1]=sum( m=1,k,(-1)^(m-1)*binomial( floor( (k-m+1)*log32)+m-1,m)*a[k-m+1] ); print(k" "a[k]) );
    } \\ Vladimir M. Zarubin, Sep 25 2015
    
  • PARI
    /* algorithm for Theorem 2 */
    {limit=30; /*or limit>30*/ R=matrix(limit,limit); R[2,1]=0; R[2,2]=1; for(n=2, limit, print; print1("For n="n" in column n: "); Kappa_n=floor(n*log(3)/log(2)); a_n=0; for(k=n, Kappa_n, R[k+1,n]=R[k,n]+R[k,n-1]; print1(R[k+1,n]", "); a_n=a_n+R[k+1,n]); print; print(" and the sum is a(n)="a_n))} \\ Mike Winkler, Sep 12 2017

Formula

A sequence s(k), where k=1, 2, ..., n, is *admissible* if it satisfies s(k)=3/2 exactly j times, s(k)=1/2 exactly n-j times, s(1)*s(2)*...*s(n) < 1 but s(1)*s(2)*...*s(m) > 1 for all 1 < m < n.
a(n) = (m+n-2)!/(m!*(n-2)!) - Sum_{i=2..n-1} binomial(floor((3*(n-i)+b)/2), n-i)*a(i), where m = floor((n-1)*log_2(3))-(n-1) and b assumes different integer values within the sum at intervals of 5 or 6 terms. (Conjecture)
a(n) = Sum_{k=n-1..A056576(n-1)} (k,n). (Theorem 2, cf. example)
a(k) = 2*A076227(A020914(k)-1) - A076227(A020914(k)), for k > 0. - Vladimir M. Zarubin, Sep 29 2019
a(1)=1, a(n) = Sum_{k=0..A020914(n-1)-n-2} A325904(k)*binomial(A020914(n-1)-k-2, n-2) for n>1. - Benjamin Lombardo, Oct 18 2019

Extensions

Two more terms from Jules Renucci (jules.renucci(AT)wanadoo.fr), Nov 02 2005
More terms from T. D. Noe, Sep 11 2006