cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101029 Denominator of partial sums of a certain series.

Original entry on oeis.org

1, 10, 70, 420, 4620, 60060, 60060, 408408, 7759752, 38798760, 892371480, 4461857400, 13385572200, 55454513400, 1719089915400, 3438179830800, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600, 73786773910618969200
Offset: 1

Views

Author

Wolfdieter Lang, Dec 17 2004

Keywords

Comments

The numerators are given in A101028.
One third of the denominator of the finite differences of the series of sums of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006

Examples

			n=2: HilbertMatrix[n,n]
   1  1/2
  1/2 1/3
so a(1) = (1/3)*denominator((1 + 1/2 + 1/2 + 1/3) - 1) = (1/3)*denominator(4/3) = 1.
The n X n Hilbert matrix begins:
   1  1/2 1/3 1/4 1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5 1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6 1/7  1/8  1/9  1/10 ...
  1/4 1/5 1/6 1/7 1/8  1/9  1/10 1/11 ...
  1/5 1/6 1/7 1/8 1/9  1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Cf. A101028 (numerators).

Programs

  • Mathematica
    Denominator[Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n,2, 27}]-Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n, 26}]]/3 (* Alexander Adamchuk, Apr 11 2006 *)
  • PARI
    a(n) = denominator(3*sum(k=1, n, 1/((2*k-1)*k*(2*k+1)))); \\ Michel Marcus, Feb 28 2022

Formula

a(n) = denominator(s(n)) with s(n) = 3*Sum_{k=1..n} 1/((2*k-1)*k*(2*k+1)). See A101028 for more information.
a(n) = (1/3)*denominator((Sum_{i=1..n+1} Sum_{j=1..n+1} 1/(i+j-1)) - (Sum_{i=1..n} Sum_{j=1..n} 1/(i+j-1))). a(n) = (1/3)*denominator(H(2*n+1) + H(2*n) - 2*H(n)), where H(n) = Sum_{k=1..n} 1/k is a harmonic number, H(n) = A001008/A002805. - Alexander Adamchuk, Apr 11 2006

Extensions

More terms from Michel Marcus, Feb 28 2022