A101037
Triangle read by rows: T(n,1) = T(n,n) = n and for 1
1, 2, 2, 3, 2, 3, 4, 2, 2, 4, 5, 3, 2, 3, 5, 6, 4, 2, 2, 4, 6, 7, 5, 3, 2, 3, 5, 7, 8, 6, 4, 2, 2, 4, 6, 8, 9, 7, 5, 3, 2, 3, 5, 7, 9, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 2, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 2, 3, 5, 7, 9, 11, 13, 14, 12, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 12, 14
Offset: 1
Examples
Triangle begins: 1; 2, 2; 3, 2, 3; 4, 2, 2, 4; 5, 3, 2, 3, 5; 6, 4, 2, 2, 4, 6; 7, 5, 3, 2, 3, 5, 7; ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
Programs
-
Maple
T:= proc(n,k) if k < (n+1)/2 then n-2*k+2 elif k=(n+1)/2 then 2 else 2*k-n fi end proc: T(1,1):= 1: seq(seq(T(n,k),k=1..n),n=1..20); # Robert Israel, Jan 30 2018
-
Mathematica
T[n_, 1] := n; T[n_, n_] := n; T[n_, k_] := T[n, k] = Which[k < (n + 1)/2, n - 2*k + 2, k == (n + 1)/2, 2, True, 2*k - n]; Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 04 2019 *)
Formula
From Robert Israel, Jan 30 2018: (Start)
T(n,k) = n - 2*k + 2 if k < (n+1)/2.
T(n,(n+1)/2) = 2 if n>1 is odd.
T(n,k) = 2*k - n if k > (n+1)/2.
G.f. as triangle: x*y*(x^6*y^3-2*x^5*y^3-2*x^5*y^2+x^4*y^3+3*x^4*y^2+x^4*y-3*x^2*y+1)/((1-x^2*y)*(1-x)^2*(1-x*y)^2).
(End)
Comments