cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101050 Least k such that prime(n)*2^k-1 is prime, or -1 if no such k exists.

Original entry on oeis.org

1, 0, 2, 1, 2, 3, 2, 1, 4, 4, 1, 1, 2, 7, 4, 2, 12, 3, 5, 2, 7, 1, 2, 4, 1, 10, 3, 10, 9, 8, 25, 2, 2, 1, 4, 5, 1, 3, 4, 2, 8, 3, 226, 3, 2, 1, 1, 3, 2, 1, 4, 4, 11, 6, 4, 2, 8, 1, 5, 2, 11, 2, 1, 26, 3, 6, 1, 1, 18, 3, 4, 4, 1, 7, 1, 2, 20, 5, 10, 3, 4, 7, 2, 3, 1, 6, 112, 9, 10, 7, 2, 12, 5, 46, 1, 2, 8
Offset: 1

Views

Author

Pierre CAMI, Jan 21 2005

Keywords

Comments

Primes p such that p*2^k-1 is composite for all k are called Riesel numbers. The smallest known Riesel number is the prime 509203. Currently, 2293 is the smallest prime whose status is unknown. For a(120), which corresponds to the prime 659, Dave Linton found the least k is 800516. - T. D. Noe, Aug 04 2005

References

Crossrefs

Cf. A046069 (least k such that (2n-1)*2^k-1 is prime).

Programs

  • Mathematica
    Table[p=Prime[n]; k=0; While[ !PrimeQ[ -1+p*2^k], k++ ]; k, {n, 119}] (* T. D. Noe, Aug 04 2005 *)

Extensions

Corrected and extended by T. D. Noe, Aug 04 2005