A101113 Let t(G) = number of unitary factors of the Abelian group G. Then a(n) = Sum t(G) over all Abelian groups G of order exactly n.
1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 10, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 14, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 20, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 22, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 20, 10, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 28, 2, 8
Offset: 1
Examples
The only finite Abelian group of order 6 is C6=C2xC3. The unitary divisors are C1, C2, C3 and C6. So a(6) = 4.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Peter Georg Schmidt, Zur Anzahl unitärer Faktoren abelscher Gruppen [On the number of unitary factors in Abelian groups], Acta Arith., 64 (1993), 237-248.
- J. Wu, On the average number of unitary factors of finite Abelian groups, Acta Arith. 84 (1998), 17-29.
Programs
-
Mathematica
Apply[Times, 2*Map[PartitionsP, Map[Last, FactorInteger[n]]]] Table[2^(PrimeNu[n])*(Times @@ PartitionsP /@ Last /@ FactorInteger@n), {n, 1, 100}] (* G. C. Greubel, Dec 27 2015 *)
-
PARI
a(n)=my(f=factor(n)[, 2]); prod(i=1, #f, numbpart(f[i]))*2^#f; \\ Michel Marcus, Dec 27 2015
Formula
a(n) = 2^(number of distinct prime factors of n) * product of prime powers in factorization of n.
Multiplicative with a(p^e) = 2 * A000041(e). - Amiram Eldar, Sep 23 2023
Comments