A101164 Triangle read by rows: Delannoy numbers minus binomial coefficients.
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 7, 3, 0, 0, 4, 15, 15, 4, 0, 0, 5, 26, 43, 26, 5, 0, 0, 6, 40, 94, 94, 40, 6, 0, 0, 7, 57, 175, 251, 175, 57, 7, 0, 0, 8, 77, 293, 555, 555, 293, 77, 8, 0, 0, 9, 100, 455, 1079, 1431, 1079, 455, 100, 9, 0, 0, 10, 126, 668, 1911, 3191, 3191, 1911, 668, 126, 10, 0
Offset: 0
Examples
Triangle begins as: 0 0, 0; 0, 1, 0; 0, 2, 2, 0; 0, 3, 7, 3, 0; 0, 4, 15, 15, 4, 0; 0, 5, 26, 43, 26, 5, 0; 0, 6, 40, 94, 94, 40, 6, 0; 0, 7, 57, 175, 251, 175, 57, 7, 0;
Links
- Reinhard Zumkeller, Rows n = 0..100 of table, flattened
- Eric Weisstein's World of Mathematics, Delannoy Number
- Eric Weisstein's World of Mathematics, Binomial Coefficient
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a101164 n k = a101164_tabl !! n !! k a101164_row n = a101164_tabl !! n a101164_tabl = zipWith (zipWith (-)) a008288_tabl a007318_tabl -- Reinhard Zumkeller, Jul 30 2013
-
Magma
A101164:= func< n,k | (&+[Binomial(n-k,j)*Binomial(k,j)*2^j: j in [0..n-k]]) - Binomial(n,k) >; [A101164(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 17 2021
-
Mathematica
T[n_, k_]:= Hypergeometric2F1[-k, k-n, 1, 2] - Binomial[n, k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2021 *)
-
Sage
def T(n,k): return simplify(hypergeometric([-n+k, -k], [1], 2)) - binomial(n,k) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 17 2021
Formula
T(n,2) = A005449(n-2) for n>1;
T(n,3) = A101165(n-3) for n>2;
T(n,4) = A101166(n-4) for n>3;
Sum_{k=0..n} T(n, k) = A094706(n).
From G. C. Greubel, Sep 17 2021: (Start)
T(n, k) = Sum_{j=0..n-k} binomial(n-k, j)*binomial(k, j)*2^j - binomial(n,k).
T(n, 1) = n-1, n > 0. (End)