cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101180 Numbers n such that 19*n^2 + 19*n + 1 is a square.

Original entry on oeis.org

0, 8, 671, 15639, 42159, 981911, 77624048, 1807894920, 4873553880, 113507005568, 8973184757831, 208989037004319, 563373081435879, 13121182828725551, 1037282211558181688, 24158714697817430640, 65124801462951244560, 1516782492521509296728
Offset: 1

Views

Author

Pierre CAMI, Apr 06 2005, Apr 22 2005

Keywords

Comments

Define a(1)=0, a(2)=8, a(3)=671, a(4)=15639, a(5)=42159, a(6)=981911, the first 6 terms found for the sequence then a(7)=57799*(2*a(3)+1)-a(2)-1, a(8)=57799*(2*a(4)+1)-a(1)-1 for n>8 a(n)=57799*(2*a(n-4)+1)-a(n-8)-1 remark:57799 = 38*39*39+1 =2*19*(39^2)+1

Crossrefs

Cf. A105839.

Programs

  • Mathematica
    CoefficientList[Series[-x^2(8x^6+663x^5+14968x^4+26520x^3+14968x^2+663x+8)/((x-1)(x^4-340x^2+1)(x^4+340x^2+1)),{x,0,30}],x] (* or *) LinearRecurrence[{1,0,0,115598,-115598,0,0,-1,1},{0,0,8,671,15639,42159,981911,77624048,1807894920},30] (* Harvey P. Dale, Aug 16 2025 *)

Formula

G.f.: -x^2*(8*x^6+663*x^5+14968*x^4+26520*x^3+14968*x^2+663*x+8) / ((x-1)*(x^4-340*x^2+1)*(x^4+340*x^2+1)). - Colin Barker, Mar 05 2013

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar
More terms (using recursive formula in comment) from Jon E. Schoenfield, Jul 10 2010
a(18) from Colin Barker, Mar 05 2013