A101190 G.f.: A(x) = Sum_{n>=0} a(n)/2^A005187(n) * x^n = lim_{n->oo} F(n)^(1/2^n) where F(n) is defined by F(n) = F(n-1)^2 + x^(2^n-1) for n >= 1 with F(0) = 1.
1, 1, -1, 5, -53, 127, -677, 2221, -61133, 205563, -1394207, 4852339, -68586849, 243751723, -1741612525, 6265913725, -363239625661, 1323861506899, -9699189175227, 35700526467479, -527987675255931, 1960112858076289, -14606721595781139, 54604708004873403
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 2221/2048*x^7 + ... + a(n)/2^A005187(n)*x^n + ... where 2^A005187(n) is also the denominator of [x^n] 1/sqrt(1-x). GENERATING METHOD. We can illustrate the generating method for g.f. A(x) as follows. Given F(n) = F(n-1)^2 + (2*x)^(2^n-1) for n >= 1 with F(0) = 1, the first few polynomials generated by F(n) begin F(0) = 1, F(1) = F(0)^2 + x^(2^1-1) = 1 + x, F(2) = F(1)^2 + x^(2^2-1) = 1 + 2*x + x^2 + x^3, F(3) = F(2)^2 + x^(2^3-1) = 1 + 4*x + 6*x^2 + 6*x^3 + 5*x^4 + 2*x^5 + x^6 + x^7. ... The 2^n-th roots of F(n) tend to the limit of the g.f.: F(1)^(1/2^1) = 1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 - 21/1024*x^6 + 33/2048*x^7 - 429/32768*x^8 + ... F(2)^(1/2^2) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 1965/2048*x^7 - 46797/32768*x^8 + ... F(3)^(1/2^3) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 2221/2048*x^7 - 61133/32768*x^8 + ... ... The limit of this process equals the g.f. A(x) of this sequence. Note: the sum of the coefficients in F(n) equals A003095(n): 1, 2 = 1 + 1, 5 = 1 + 2 + 1 + 1, 26 = 1 + 4 + 6 + 6 + 5 + 2 + 1 + 1, ... The last n coefficients in F(n) read backwards are Catalan numbers (A000108). POWERS OF A(x). The coefficients of x^k in the 2^n powers of the g.f. A(x) begin: A^(2^0) = [1, 1/2, -1/8, 5/16, -53/128, 127/256, -677/1024, 2221/2048, ...], A^(2^1) = [1, 1, 0, 1/2, -1/2, 1/2, -5/8, 9/8, -2, 53/16, -89/16, 155/16, ...], A^(2^2) = [1, 2, 1, 1, 0, 0, 0, 1/2, -1, 3/2, -5/2, 9/2, -8, 14, -197/8, 44, ...], A^(2^3) = [1, 4, 6, 6, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1/2, -2, 5, ...], A^(2^4) = [1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1, 0, 0, ...].
Programs
-
PARI
{a(n) = my(F=1,A,L); if(n==0,A=1,L=ceil(log(n+1)/log(2)); for(k=1,L, F = F^2 + x^(2^k-1) +x*O(x^n)); A = polcoeff(F^(1/2^L),n)); numerator(A)} for(n=0,32, print1(a(n),", "))
Formula
Extensions
Entry revised by Paul D. Hanna, Mar 05 2024
Comments