A101271 Number of partitions of n into 3 distinct and relatively prime parts.
1, 1, 2, 3, 4, 5, 6, 8, 9, 12, 12, 16, 15, 21, 20, 26, 25, 33, 28, 40, 36, 45, 42, 56, 44, 65, 56, 70, 64, 84, 66, 96, 81, 100, 88, 120, 90, 133, 110, 132, 121, 161, 120, 175, 140, 176, 156, 208, 153, 220, 180, 222, 196, 261, 184, 280, 225, 270, 240, 312, 230, 341, 272
Offset: 6
Examples
For n=10 we have 4 such partitions: 1+2+7, 1+3+6, 1+4+5 and 2+3+5. From _Gus Wiseman_, Oct 13 2020: (Start) The a(6) = 1 through a(18) = 15 triples (A..F = 10..15): 321 421 431 432 532 542 543 643 653 654 754 764 765 521 531 541 632 651 652 743 753 763 854 873 621 631 641 732 742 752 762 853 863 954 721 731 741 751 761 843 871 872 972 821 831 832 851 852 943 953 981 921 841 932 861 952 962 A53 931 941 942 961 971 A71 A21 A31 951 A51 A43 B43 B21 A32 B32 A52 B52 A41 B41 A61 B61 B31 C31 B42 C51 C21 D21 B51 D32 C32 D41 C41 E31 D31 F21 E21 (End)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 6..10000
Crossrefs
A000741 is the ordered non-strict version.
A001399(n-6) does not require relative primality.
A023022 counts pairs instead of triples.
A023023 is the not necessarily strict version.
A101271*6 is the ordered version.
A220377 is the pairwise coprime instead of relatively prime version.
A284825 counts the case that is pairwise non-coprime also.
A337605 is the pairwise non-coprime instead of relatively prime version.
A008289 counts strict partitions by sum and length.
A007304 gives the Heinz numbers of 3-part strict partitions.
A307719 counts 3-part pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
Programs
-
Maple
m:=3: with(numtheory): g:=sum(mobius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k),i=1..m),k=1..20): gser:=series(g,x=0,80): seq(coeff(gser,x^n),n=6..77); # Emeric Deutsch, May 31 2005
-
Mathematica
Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&GCD@@#==1&]],{n,6,50}] (* Gus Wiseman, Oct 13 2020 *)
Formula
G.f. for the number of partitions of n into m distinct and relatively prime parts is Sum(moebius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k), i=1..m), k=1..infinity).
Extensions
More terms from Emeric Deutsch, May 31 2005
Comments