cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 111 results. Next

A292258 a(1) = 1; for n > 1, a(n) = prime(A101296(n)-1) * a(floor(n/2)).

Original entry on oeis.org

1, 2, 2, 6, 4, 10, 4, 42, 18, 20, 8, 110, 20, 20, 20, 546, 84, 198, 36, 220, 100, 40, 16, 1870, 330, 100, 140, 220, 40, 380, 40, 12558, 2730, 420, 420, 5742, 396, 180, 180, 3740, 440, 1900, 200, 440, 440, 80, 32, 57970, 5610, 3630, 1650, 1100, 200, 2380, 700, 3740, 1100, 200, 80, 14060, 760, 200, 440, 514878
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2017

Keywords

Crossrefs

Cf. A000040, A000523, A004526, A007814, A078349, A101296, A292259 (rgs-version of this filter).

Programs

  • Mathematica
    With[{nn = 64}, Block[{s = Function[s, Table[Position[Keys@ s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], {n, nn}], a}, a[n_] := a[n] = If[n == 1, 1, Prime[s[[n]] - 1]*a[Floor[n/2]]]; Array[a, nn]]] (* Michael De Vlieger, Sep 22 2017 *)
  • PARI
    up_to = 8191
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    v101296 = rgs_transform(vector(up_to, n, A046523(n)));
    A101296(n) = v101296[n];
    A292258(n) = if(1==n,n,prime(A101296(n)-1) * A292258(n\2));

Formula

a(1) = 1; for n > 1, a(n) = A000040(A101296(n)-1) * a(A004526(n)).
Other identities. For all n >= 1:
A001222(a(n)) = A000523(n).
A007814(a(n)) = A078349(n).

A294897 a(n) = Product_{d|n, gcd(d,n/d)>1} prime(A101296(gcd(d,n/d))-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 4, 1, 1, 1, 12, 1, 4, 1, 4, 1, 1, 1, 16, 2, 1, 4, 4, 1, 1, 1, 36, 1, 1, 1, 80, 1, 1, 1, 16, 1, 1, 1, 4, 4, 1, 1, 144, 2, 4, 1, 4, 1, 16, 1, 16, 1, 1, 1, 16, 1, 1, 4, 252, 1, 1, 1, 4, 1, 1, 1, 1600, 1, 1, 4, 4, 1, 1, 1, 144, 12, 1, 1, 16, 1, 1, 1, 16, 1, 16, 1, 4, 1, 1, 1, 1296, 1, 4, 4, 80, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2017

Keywords

Crossrefs

Cf. A005117 (the positions of ones).
Cf. also A292258 (A292259), A293515, A294875 for similar filter sequences.

Programs

  • PARI
    up_to = 16384
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    v101296 = rgs_transform(vector(up_to, n, A046523(n)));
    A101296(n) = v101296[n];
    A294897(n) = { my(m=1); fordiv(n,d,if(gcd(d,n/d)>1, m *= prime(A101296(gcd(d,n/d))-1))); m; };

Formula

a(n) = Product_{d|n} A008578(A101296(gcd(d,n/d))).
For n >= 1, A001222(a(n)) = A048105(n).

A295888 Filter combining prime signature of n (A101296) with Dedekind's psi (A001615).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 42, 47, 48, 49, 42, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 56, 60, 63, 64, 65, 66, 67, 67, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 77
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    Anotsubmitted8(n) = (1/2)*(2 + ((A046523(n)+A001615(n))^2) - A046523(n) - 3*A001615(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted8(n))),"b295888.txt");

Formula

Restricted growth sequence transform of function f(n) = (1/2)*(2 + ((A046523(n) + A001615(n))^2) - A046523(n) - 3*A001615(n)), where values A046523(n) and A001615(n) are packed together to a(n) with the 2-argument form of A000027, also known as Cantor pairing-function.

A286454 Compound filter (prime signature & prime signature of conjugated prime factorization): a(n) = P(A101296(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 9, 12, 32, 23, 20, 13, 49, 38, 51, 47, 82, 49, 35, 68, 51, 80, 72, 124, 140, 122, 74, 18, 175, 26, 111, 155, 334, 192, 65, 257, 280, 82, 116, 255, 329, 355, 99, 327, 570, 380, 177, 72, 469, 437, 132, 31, 72, 532, 216, 498, 74, 257, 144, 599, 634, 597, 448, 632, 745, 159, 119, 784, 1044, 782, 331, 907, 570, 863, 186, 905, 1039, 72, 384, 140, 1335, 1037
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Comments

Here, instead of A046523 and A278221 we use as the components of a(n) their rgs-versions A101296 and A286621 because of the latter sequence's moderate growth rates.
For all i, j: a(i) = a(j) => A286356(i) = A286356(j).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n)+A286621(n))^2) - A101296(n) - 3*A286621(n)).

A291752 Compound filter: a(n) = P(A101296(n), A291751(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 18, 17, 40, 30, 71, 58, 82, 23, 126, 80, 124, 124, 197, 57, 196, 138, 237, 214, 235, 93, 359, 256, 304, 356, 412, 327, 570, 173, 640, 469, 500, 469, 791, 498, 599, 634, 828, 255, 912, 668, 867, 909, 410, 408, 1237, 864, 1041, 410, 1087, 437, 1233, 410, 1283, 1132, 1180, 530, 1724, 1178, 707, 1437, 1967, 1435, 1779, 1433, 1717, 707, 1779, 353, 2361
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2017

Keywords

Comments

This filter combines information about A101296(n) (prime signature of n, A046523), A003557(n) and A048250(n). - Antti Karttunen, Oct 08 2017

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n) + A291751(n))^2) - A101296(n) - 3*A291751(n)).

Extensions

Formula corrected by Antti Karttunen, Oct 08 2017

A296090 Filter combining the sum of divisors (A000203) and prime-signature (A101296) of n; restricted growth sequence transform of A286360.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 57, 61, 64, 65, 66, 67, 68, 69, 57, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

For all i, j:
a(i) = a(j) => A286034(i) = A286034(j).
a(i) = a(j) => A295880(i) = A295880(j).

Crossrefs

Differs from related A295880 for the first time at n=135, where a(135) = 123, while A295880(135) = 104.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000203(n) = sigma(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286360(n))),"b296090.txt");

A286467 Compound filter (prime signature of n & prime signature of the n-th Fibonacci number): a(n) = P(A101296(n), A286545(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 5, 9, 5, 19, 5, 33, 18, 25, 5, 51, 5, 25, 40, 73, 5, 72, 12, 84, 40, 25, 5, 128, 69, 25, 71, 84, 5, 180, 12, 146, 40, 25, 40, 242, 23, 40, 40, 198, 12, 180, 5, 177, 177, 40, 5, 337, 31, 216, 40, 84, 12, 284, 59, 308, 140, 40, 12, 478, 12, 40, 177, 339, 40, 180, 23, 177, 140, 387, 12, 610, 12, 59, 216, 177, 59, 309, 12, 540, 332, 40, 5, 608, 59, 40, 59
Offset: 1

Views

Author

Antti Karttunen, May 17 2017

Keywords

Comments

Nonsquare semiprimes pq for which F(pq) is also a semiprime is given by the positions where 25's occur in this sequence: 10, 14, 22, 26, 34, 94, (any more terms?). This is a subsequence of A072381.

Crossrefs

Cf. A083668 (positions of 5's).

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n) + A286545(n))^2) - A101296(n) - 3*A286545(n)).

A302046 A filter sequence analogous to A101296 for nonstandard factorization based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 5, 4, 2, 8, 3, 4, 4, 6, 2, 9, 2, 10, 6, 4, 4, 11, 2, 4, 4, 8, 2, 8, 2, 6, 7, 4, 2, 12, 3, 6, 6, 6, 2, 9, 5, 8, 6, 4, 2, 13, 2, 4, 4, 14, 4, 13, 2, 6, 8, 9, 2, 15, 2, 4, 4, 6, 4, 9, 2, 12, 6, 4, 2, 15, 6, 4, 9, 8, 2, 12, 5, 6, 10, 4, 4, 16, 2, 6, 4, 11, 2, 13, 2, 8, 11
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

Restricted growth sequence transform of A278524.
See A302042 for the description of the nonstandard factorization employed here.
For all i, j:
a(i) = a(j) => A253557(i) = A253557(j).
a(i) = a(j) => A302041(i) = A302041(j).
a(i) = a(j) => A302050(i) = A302050(j).
a(i) = a(j) => A302051(i) = A302051(j) => A302052(i) = A302052(j).

Crossrefs

Programs

  • PARI
    up_to = 32769;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A020639(n) = { if(1==n,n,vecmin(factor(n)[, 1])); };
    A078898(n) = { if(n<=1,n, my(spf=A020639(n),k=1,m=n/spf); while(m>1,if(A020639(m)>=spf,k++); m--); (k)); };
    A001511(n) = 1+valuation(n,2);
    A302045(n) = A001511(A078898(n));
    A302044(n) = if(1==n,n,my(k=0); while((n%2), n = A268674(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A250469(n); k--); (n));
    A302041(n) = if(1==n, 0,1+A302041(A302044(n)));
    Aux302046(n) = if(1==n,n, my(k=A302041(n), v = vector(k),i=1); while(n>1,v[i] = A302045(n); n = A302044(n); i++); vecsort(v));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux302046(n))),"b302046.txt");

A286566 Compound filter (prime signature of n & prime signature of the n-th Jacobsthal number): a(n) = P(A101296(n), A286566(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 5, 9, 5, 19, 5, 26, 18, 19, 5, 51, 5, 19, 40, 73, 5, 72, 5, 72, 40, 40, 5, 113, 31, 19, 83, 111, 8, 129, 5, 101, 32, 19, 32, 221, 8, 19, 40, 179, 8, 199, 5, 84, 159, 40, 8, 312, 13, 84, 82, 84, 8, 239, 49, 261, 32, 82, 23, 419, 5, 19, 159, 224, 82, 334, 8, 84, 32, 334, 8, 543, 8, 32, 84, 84, 82, 285, 5, 243, 332, 32, 57, 478, 40, 32, 32, 218, 23, 419, 82
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Comments

Here, instead of A046523 and A278165 we use as the components of a(n) their rgs-versions A101296 and A286565 because of the latter sequences' more moderate growth rates.

Crossrefs

Cf. A000978 (positions of 5's).
Cf. A286467 (similar filter).

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n)+A286565(n))^2) - A101296(n) - 3*A286565(n)).

A289628 Compound filter (for the structure of the multiplicative group of integers modulo n & prime signature of n): a(n) = P(A289626(n), A101296(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 5, 8, 9, 12, 14, 41, 19, 18, 27, 50, 35, 25, 63, 99, 54, 40, 65, 86, 102, 42, 90, 203, 134, 52, 101, 131, 135, 128, 152, 342, 228, 75, 250, 221, 230, 88, 250, 399, 275, 182, 299, 271, 295, 117, 324, 517, 323, 185, 403, 295, 377, 146, 462, 623, 525, 168, 495, 549, 527, 187, 698, 728, 663, 343, 629, 460, 738, 370, 702, 889, 740, 273, 523, 590, 858, 370
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2017

Keywords

Comments

Here, instead of A046523 and A289625 we use as the components of a(n) their rgs-versions A101296 and A289626 because of the latter sequence's more moderate growth rate.
For all i, j: a(i) = a(j) => A286160(i) = A286160(j).
For all i, j: a(i) = a(j) => A289622(i) = A289622(j).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A289626(n)+A101296(n))^2) - A289626(n) - 3*A101296(n)).
Showing 1-10 of 111 results. Next