A101330 Array read by antidiagonals: T(n, k) = Knuth's Fibonacci (or circle) product of n and k ("n o k"), n >= 1, k >= 1.
3, 5, 5, 8, 8, 8, 11, 13, 13, 11, 13, 18, 21, 18, 13, 16, 21, 29, 29, 21, 16, 18, 26, 34, 40, 34, 26, 18, 21, 29, 42, 47, 47, 42, 29, 21, 24, 34, 47, 58, 55, 58, 47, 34, 24, 26, 39, 55, 65, 68, 68, 65, 55, 39, 26, 29, 42, 63, 76, 76, 84, 76, 76, 63, 42, 29, 32, 47
Offset: 1
Examples
Array begins: 3 5 8 11 13 16 18 21 24 ... 5 8 13 18 21 26 29 34 39 ... 8 13 21 29 34 42 47 55 63 ... 11 18 29 40 47 58 65 76 87 ... 13 21 34 47 55 68 76 89 102 ... 16 26 42 58 68 84 94 110 126 ... 18 29 47 65 76 94 105 123 141 ... 21 34 55 76 89 110 123 144 165 ... 24 39 63 87 102 126 141 165 189 ... ...........................................
Links
- T. D. Noe, First 100 antidiagonals, flattened
- P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (1989), 319-320.
- P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (No. 4, 1989), 319-320. [Annotated scanned copy]
- Vincent Canterini and Anne Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144.
- P. Grabner et al., Associativity of recurrence multiplication, Appl. Math. Lett. 7 (1994), 85-90.
- D. E. Knuth, Fibonacci multiplication, Appl. Math. Lett. 1 (1988), 57-60.
- W. F. Lunnon, Proof of formula
- A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, Journal de théorie des nombres de Bordeaux, 10 no. 1 (1998), p. 135-162.
- A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy [alternative copy]
- A. Messaoudi, Généralisation de la multiplication de Fibonacci, Math. Slovaca, 50 (2) (2000), 135-148.
- A. Messaoudi, Tribonacci multiplication, Appl. Math. Lett. 15 (2002), 981-985.
Crossrefs
Programs
-
Maple
h := n -> floor(2*(n + 1)/(sqrt(5) + 3)): # A060144(n+1) T := (n, k) -> 3*n*k - n*h(k) - k*h(n): seq(print(seq(T(n, k), k = 1..9)), n = 1..7); # Peter Luschny, Mar 21 2024
-
Mathematica
zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfp[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[i + j + 2], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *) Flatten[ Table[ kfp[i, n - i], {n, 2, 13}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *) A101330[n_, k_]:=3*n*k-n*Floor[(k+1)/GoldenRatio^2]-k*Floor[(n+1)/GoldenRatio^2]; Table[A101330[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
Formula
T(n, k) = 3*n*k - n*floor((k+1)/phi^2) - k*floor((n+1)/phi^2). For proof see link. - Fred Lunnon, May 19 2008
T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024
Extensions
More terms from David Applegate, Jan 26 2005
Comments