cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A101385 Array read by antidiagonals: T(n,k) = variant of Knuth's Fibonacci (or circle) product of n and k (A101330).

Original entry on oeis.org

3, 8, 8, 21, 34, 21, 24, 144, 144, 24, 55, 152, 987, 152, 55, 58, 610, 1008, 1008, 610, 58, 63, 618, 6765, 1032, 6765, 618, 63, 144, 644, 6786, 6820, 6820, 6786, 644, 144, 147, 2584, 6909, 6844, 75025, 6844, 6909, 2584, 147, 152, 2592, 46368, 6972, 75080
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). The product of n and k is defined here to be Sum_{i,j} eps(i)*eps(j) Fib_{i*j} (= T(n,k)).

Examples

			Array begins:
3 8 21 24 55 ...
8 34 144 152 ...
21 144 987 ...
24 152 ...
55 ...
		

Crossrefs

Cf. A101330, A035517, A014417. Main diagonal is A101633.
First 3 rows give A101643, A101644, A101645.

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfpv[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[(i + 1)(j + 1)], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *)
    Flatten[ Table[ kfpv[i, n - i], {n, 2, 12}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *)

Extensions

More terms from David Applegate, Jan 26 2005

A101646 Array read by antidiagonals: T(n,k) = variant of Knuth's Fibonacci (or circle) product of n and k (A101330). Sometimes called the "arroba" product.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 5, 6, 8, 11, 11, 8, 6, 7, 10, 13, 15, 13, 10, 7, 8, 11, 16, 18, 18, 16, 11, 8, 9, 13, 18, 22, 21, 22, 18, 13, 9, 10, 15, 21, 25, 26, 26, 25, 21, 15, 10, 11, 16, 24, 29, 29, 32, 29, 29, 24, 16, 11, 12, 18, 26, 33, 34, 36, 36, 34, 33, 26, 18, 12
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Jan 26 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). The product of n and k is defined here to be n x k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j-2} (= T(n,k)). [Comment corrected by R. J. Mathar, Aug 07 2007]
Although now 1 is the multiplicative identity, in contrast to A101330, this multiplication is not associative. For example, as pointed out by Grabner et al., we have (4 x 7 ) x 9 = 25 x 9 = 198 but 4 x (7 x 9 ) = 4 x 54 = 195.

Examples

			Array begins:
  1 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 ...
  2 3  5  7  8 10 11 13 15 16 18 20 21 23 24 26 28 29 31 ...
  3 5  8 11 13 16 18 21 24 26 29 32 34 37 39 42 45 47 50 ...
  4 7 11 15 18 22 25 29 33 36 40 44 47 51 54 58 62 65 69 ...
  5 8 13 18 21 26 29 34 39 42 47 52 55 60 63 68 73 76 81 ...
...
		

Crossrefs

Cf. A101330, A101385, A035517, A014417. Main diagonal is A101711.
First 4 rows give A000027, A022342, A026274, A101741.

Programs

  • Mathematica
    T[n_, k_] := With[{phi2 = GoldenRatio^2}, n k - Floor[(k + 1)/phi2] Floor[ (n + 1)/phi2]];
    Table[T[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2020 *)
  • PARI
    T(n, k) = my(phi2 = ((1+sqrt(5))/2)^2); n*k - floor((k+1)/phi2)*floor((n+1)/phi2); \\ Michel Marcus, Mar 29 2016

Formula

T(n, k) = n*k - [(k+1)/phi^2] [(n+1)/phi^2]. For proof see link. - Fred Lunnon, May 24 2008

A101866 Array read by antidiagonals: Arnoux's product T(n,k) = n * k = nk + ceiling(phi n) ceiling(phi k), where phi = (1 + sqrt(5))/2 ; m, n >= 1.

Original entry on oeis.org

5, 10, 10, 13, 20, 13, 18, 26, 26, 18, 23, 36, 34, 36, 23, 26, 46, 47, 47, 46, 26, 31, 52, 60, 65, 60, 52, 31, 34, 62, 68, 83, 83, 68, 62, 34, 39, 68, 81, 94, 106, 94, 81, 68, 39, 44, 78, 89, 112, 120, 120, 112, 89, 78, 44, 47, 88, 102, 123, 143, 136, 143, 123, 102, 88, 47, 52
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Comments

Row 1 / column 1 (given in A101868) = positions of 1 in A188009, viz.,
A188009 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ...), A101868 = (5, 10, 13, 18, 23, 26, 31, 34, 39, 44, 47, 52, 57, ...). - Clark Kimberling and John W. Layman, Mar 19 2011, corrected and edited by M. F. Hasler, Oct 12 2017
By definition, the array is symmetric, so row n = column n. Row 1 is essentially the same as A188434: T(n,1) = A101868(n) = A188434(n+1). - M. F. Hasler, Oct 12 2017
This product is commutative but is not associative and does not distribute over addition. - Peter Bala, Aug 13 2022

Examples

			   5 10 13 18  23 ...
  10 20 26 36  46
  13 26 34 47  60
  18 36 47 65  83
  23 46 60 83 106
  ...
		

Crossrefs

Cf. A101858, A101330, A101385, A101633 for similarly defined products.
Main diagonal is A101867.
First 3 rows are A101868, A101869, A101870.
Cf. A001622.

Programs

  • Mathematica
    A101866[n_, k_] := n*k + Ceiling[n*GoldenRatio]*Ceiling[k*GoldenRatio];
    Table[A101866[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
  • PARI
    T(n, k) = my(phi = (1+sqrt(5))/2); n*k + ceil(phi*n)*ceil(phi*k); \\ Michel Marcus, Mar 29 2016

A101858 Array read by antidiagonals: T(n,k) = Porta-Stolarsky star product T(n,k) = n * k = nk + floor(phi n) floor(phi k) where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

2, 5, 5, 7, 13, 7, 10, 18, 18, 10, 13, 26, 25, 26, 13, 15, 34, 36, 36, 34, 15, 18, 39, 47, 52, 47, 39, 18, 20, 47, 54, 68, 68, 54, 47, 20, 23, 52, 65, 78, 89, 78, 65, 52, 23, 26, 60, 72, 94, 102, 102, 94, 72, 60, 26, 28, 68, 83, 104, 123, 117, 123, 104, 83, 68, 28, 31, 73, 94, 120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Examples

			..2...5...7..10..13..15..18..20..23..26.
..5..13..18..26..34..39..47..52..60..68.
..7..18..25..36..47..54..65..72..83..94.
.10..26..36..52..68..78..94.104.120.136.
.13..34..47..68..89.102.123.136.157.178.
.15..39..54..78.102.117.141.156.180.204.
.18..47..65..94.123.141.170.188.217.246.
.20..52..72.104.136.156.188.208.240.272.
.23..60..83.120.157.180.217.240.277.314.
.26..68..94.136.178.204.246.272.314.356.
		

Crossrefs

See A101330, A101385, A101633, A101866 for related definitions of product.
Main diagonal is A101863.
First 3 rows are A001950, A101864, A101865.
Cf. A001622.

Programs

  • Maple
    A101858 := proc(n,k)
            phi := (1+sqrt(5))/2 ;
            n*k+floor(n*phi)*floor(phi*k) ;
    end proc: # R. J. Mathar, Dec 06 2011
  • Mathematica
    t[n_, k_] := n*k + Floor[n*GoldenRatio] * Floor[GoldenRatio*k]; Table[t[n-k, k], {n, 2, 13}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

A101345 a(n) = Knuth's Fibonacci (or circle) product "2 o n".

Original entry on oeis.org

5, 8, 13, 18, 21, 26, 29, 34, 39, 42, 47, 52, 55, 60, 63, 68, 73, 76, 81, 84, 89, 94, 97, 102, 107, 110, 115, 118, 123, 128, 131, 136, 141, 144, 149, 152, 157, 162, 165, 170, 173, 178, 183, 186, 191, 196, 199, 204, 207, 212, 217, 220, 225, 228, 233, 238, 241, 246
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2005

Keywords

Comments

Numbers whose Zeckendorf representation ends with 000. - Benoit Cloitre, Jan 11 2014
The asymptotic density of this sequence is sqrt(5)-2. - Amiram Eldar, Mar 21 2022

Crossrefs

Second row of array in A101330.
Set-wise difference of A026274 - A035337.

Programs

Formula

a(n) = floor(phi^3*(n+1)) - 3 - floor(2*phi*(n+1)) + 2*floor(phi*(n+1)) where phi = (1+sqrt(5))/2. - Benoit Cloitre, Jan 11 2014
a(n) = 2*A000201(n+1) + n - 2. See the comments in A101642. - Michel Dekking, Dec 23 2019

Extensions

More terms from David Applegate, Jan 26 2005
More terms from Robert G. Wilson v, Feb 04 2005

A101642 a(n) = Knuth's Fibonacci (or circle) product "3 o n".

Original entry on oeis.org

8, 13, 21, 29, 34, 42, 47, 55, 63, 68, 76, 84, 89, 97, 102, 110, 118, 123, 131, 136, 144, 152, 157, 165, 173, 178, 186, 191, 199, 207, 212, 220, 228, 233, 241, 246, 254, 262, 267, 275, 280, 288, 296, 301, 309, 317, 322, 330, 335, 343, 351, 356, 364, 369, 377
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2005

Keywords

Comments

Let phi be the golden ratio. Using Fred Lunnon's formula in A101330 for Knuth's circle product, and the fact that phi^{-2} = 2-phi, plus [-x] = -[x]-1 for non-integer x, one obtains the formula below, expressing this sequence in terms of the lower Wythoff sequence. It follows in particular that the sequence of first differences 5,8,8,5,8,5,8,8,5,8,... of this sequence is the Fibonacci word A003849 on the alphabet {8,5}, shifted by 1. - Michel Dekking, Dec 23 2019
Also numbers with suffix string 0000, when written in Zeckendorf representation. - A.H.M. Smeets, Mar 20 2024
The asymptotic density of this sequence is 1/phi^4 = A094214^4 = 0.145898... . - Amiram Eldar, Mar 24 2025

Crossrefs

Third row of array in A101330.
Cf. A101345 = Knuth's Fibonacci (or circle) product "2 o n".

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfp[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[i + j + 2], {i, Length[z1]}, {j, Length[z2]}]]; (* Robert G. Wilson v, Feb 04 2005 *)
    Table[ kfp[3, n], {n, 50}] (* Robert G. Wilson v, Feb 04 2005 *)
    Array[3*Floor[(# + 1)*GoldenRatio] + 2*# - 3 &, 100] (* Paolo Xausa, Mar 23 2024 *)
  • Python
    from math import isqrt
    def A101642(n): return 3*(n+1+isqrt(5*(n+1)**2)>>1)+(n<<1)-3 # Chai Wah Wu, Aug 29 2022

Formula

From Michel Dekking, Dec 23 2019: (Start)
a(n) = 3*A000201(n+1) + 2n - 3.
a(n) = A101345(n) + A000201(n+1) + n + 1. (End)

Extensions

More terms from David Applegate, Jan 26 2005
More terms from Robert G. Wilson v, Feb 04 2005

A101332 a(n) = Knuth's Fibonacci (or circle) square "n o n".

Original entry on oeis.org

3, 8, 21, 40, 55, 84, 105, 144, 189, 220, 275, 336, 377, 448, 495, 576, 663, 720, 817, 880, 987, 1100, 1173, 1296, 1425, 1508, 1647, 1736, 1885, 2040, 2139, 2304, 2475, 2584, 2765, 2880, 3071, 3268, 3393, 3600, 3731, 3948, 4171, 4312, 4545, 4784, 4935
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2005

Keywords

Crossrefs

Main diagonal of A101330.

Programs

  • Mathematica
    Array[3*#^2-2*#*Floor[(#+1)/GoldenRatio^2] &,100] (* Paolo Xausa, Mar 20 2024 *)

Extensions

More terms from David Applegate, Jan 26 2005
More terms from T. D. Noe, May 07 2007

A135090 Array read by antidiagonals: T(n, k) = Knuth's Fibonacci (or circle) product of n and k ("n o k"), n >= 0, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 0, 5, 5, 0, 0, 8, 8, 8, 0, 0, 11, 13, 13, 11, 0, 0, 13, 18, 21, 18, 13, 0, 0, 16, 21, 29, 29, 21, 16, 0, 0, 18, 26, 34, 40, 34, 26, 18, 0, 0, 21, 29, 42, 47, 47, 42, 29, 21, 0, 0, 24, 34, 47, 58, 55, 58, 47, 34, 24, 0, 0, 26, 39, 55, 65, 68, 68, 65, 55, 39, 26, 0, 0, 29, 42, 63, 76, 76, 84, 76, 76, 63, 42, 29, 0, 0, 32, 47
Offset: 0

Views

Author

N. J. A. Sloane, May 17 2008

Keywords

Comments

This is a variant of A101330. See that entry for much more information.

Examples

			Array begins:
  n\k |  0   1   2   3   4    5    6    7    8    9 ...
  ----+------------------------------------------------
   0  |  0   0   0   0   0    0    0    0    0    0 ...
   1  |  0   3   5   8  11   13   16   18   21   24 ...
   2  |  0   5   8  13  18   21   26   29   34   39 ...
   3  |  0   8  13  21  29   34   42   47   55   63 ...
   4  |  0  11  18  29  40   47   58   65   76   87 ...
   5  |  0  13  21  34  47   55   68   76   89  102 ...
   6  |  0  16  26  42  58   68   84   94  110  126 ...
   7  |  0  18  29  47  65   76   94  105  123  141 ...
   8  |  0  21  34  55  76   89  110  123  144  165 ...
   9  |  0  24  39  63  87  102  126  141  165  189 ...
  ...
		

Crossrefs

Programs

  • Maple
    h := n -> floor(2*(n + 1)/(sqrt(5) + 3)):  # A060144(n+1)
    T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
    seq(print(seq(T(n, k), k = 0..9)), n = 0..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    A135090[n_, k_] := 3*n*k - n*Floor[(k + 1) / GoldenRatio^2] - k*Floor[(n + 1) / GoldenRatio^2];
    Table[A135090[n-k, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Mar 21 2024 *)

Formula

T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024

A340429 Array T(n, k) is the number x such that frac(x*phi) + frac(n*phi)*frac(k*phi) = 1 where phi is the golden ratio A001622 and frac(y) is the fractional part of y, read by antidiagonals.

Original entry on oeis.org

1, 3, 3, 4, 8, 4, 6, 11, 11, 6, 8, 16, 15, 16, 8, 9, 21, 22, 22, 21, 9, 11, 24, 29, 32, 29, 24, 11, 12, 29, 33, 42, 42, 33, 29, 12, 14, 32, 40, 48, 55, 48, 40, 32, 14, 16, 37, 44, 58, 63, 63, 58, 44, 37, 16, 17, 42, 51, 64, 76, 72, 76, 64, 51, 42, 17
Offset: 1

Views

Author

Michel Marcus, Jan 07 2021

Keywords

Examples

			Array begins:
  1  3  4  6  8 ...
  3  8 11 16 21 ...
  4 11 15 22 29 ...
  6 16 22 32 42 ...
  8 21 29 42 55 ...
  ...
		

Crossrefs

Cf. A000201 (row 1), A003623 (row 2), A190509 (row 3), A371388 (main diagonal).

Programs

  • Maple
    h := n -> ceil(2*n / (sqrt(5) + 3)):
    T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
    seq(lprint(seq(T(n, k), k = 1..9)), n = 1..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    A340429[n_, k_] := Floor[n * GoldenRatio] * k + Floor[k * GoldenRatio] * n - n * k;
    Table[A340429[n - k + 1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 21 2024 *)
  • PARI
    f(n) = 2*floor(n*(1+sqrt(5))/2) - 3*n; \\ A339765
    T(n, k) = 2*n*k + f(n)*k/2 + f(k)*n/2;

Formula

T(n, k) = 2*n*k + A339765(n)*k/2 + A339765(k)*n/2.
T(n, k) = T(k, n), array is symmetric.
T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = ceiling(2*n / (sqrt(5) + 3)) = A189663(n + 1). - Peter Luschny, Mar 21 2024

A357097 A multiplication table for the rows of the extended Wythoff array. See comments for definition.

Original entry on oeis.org

0, 1, 1, 2, 15, 2, 3, 8, 8, 3, 4, 12, 4, 12, 4, 5, 44, 18, 18, 44, 5, 6, 19, 24, 27, 24, 19, 6, 7, 62, 28, 96, 96, 28, 62, 7, 8, 26, 34, 42, 128, 42, 34, 26, 8, 9, 30, 14, 51, 56, 56, 51, 14, 30, 9, 10, 91, 44, 57, 180, 65, 180, 57, 44, 91, 10, 11, 37, 50, 66, 76, 79, 79, 76, 66, 50, 37, 11
Offset: 0

Views

Author

Peter Munn, Sep 11 2022

Keywords

Comments

Square array A(x,y), x >= 0, y >= 0, defined as follows:
(1) Extend the Wythoff array infinitely to the left, maintaining the Fibonacci recurrence (see A287870 examples). We denote this extended array as eW(n,m), n >= 0, m any integer, indexed such that eW(n,0) = n. From each row n, form the set of pairs S_n = {(eW(n,m+1),eW(n,m)) : integer m)}.
(2) Define addition and multiplication of pairs by (j1,k1) + (j2,k2) = (j1+j2, k1+k2) and (j1,k1) o (j2,k2) = (j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2). (This defines a commutative ring with identity (1,0).)
(3) For nonnegative integers x and y, there is an integer z such that for every pair (j_x,k_x) in S_x and every pair (j_y,k_y) in S_y, (j_x,k_x) o (j_y,k_y) is in S_z. Define A(x,y) = z.
As a binary operation, A(.,.) is analogous to multiplication of coefficients in scientific numeric notation. The column position, m, used to define a pair in (1) above does not affect the eventual outcome, A(x,y), in (3), as no special pairs are selected from the pairs in S_x or S_y. The column position is analogous to the exponent. Notice also A(1,1) = 15 is substantially larger than A(2,2) = 4. This can be seen as analogous to 0.3 * 0.4 = 0.12 requiring more digits than 0.5 * 0.8 = 0.4.

Examples

			Calculation for A(1,2). Rows 1 and 2 of A287870 (indexed from 0) start 1, 3, ... and 2, 4, ... . So we may use the pairs (3,1) and (4,2). The defined multiplication gives (3*4 + 1*2, 3*2 + 4*1 - 1*2) = (14,8). 8, 14 , ... is in row 8 of A287870, so A(1,2) = 8.
For A(1,1), we start as above to get (3*3 + 1*1, 3*1 + 3*1 - 1*1) = (10,5). In the more general case, we form a sequence using the Fibonacci recurrence (as ..., 5, 10, ... may be in the extension leftwards of A287870). This starts 5, 10, 5+10=15, 10+15=25, 15+25=40, ... . We observe 15, 25, 40, ... is in row 15. So A(1,1) = 15.
The top left corner of the array:
  0   1   2    3    4    5    6    7    8    9
  1  15   8   12   44   19   62   26   30   91
  2   8   4   18   24   28   34   14   44   50
  3  12  18   27   96   42   51   57   66  198
  4  44  24   96  128   56  180   76   88  264
  5  19  28   42   56   65   79   33  102  116
  6  62  34   51  180   79  253  107  124  371
  7  26  14   57   76   33  107   45  138  157
  8  30  44   66   88  102  124  138  160  182
  9  91  50  198  264  116  371  157  182  544
		

Crossrefs

See the formula section for the relationships with A000201, A003622, A019586, A035336, A101330.

Programs

  • PARI
    lowerw(n) = (n+sqrtint(5*n^2))\2 ; \\ A000201
    upperw(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950
    compoundw(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ A003622
    wpair(p) = {my(x=p[2], y = p[1], z); while(1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = upperw(n)); if ((x == xx) && (y == yy), return([xx, yy])); if (xx > x, ok = 0); n++;); z = y; y += x; x = z;);}
    row(p) = {my(x=p[1], y=p[2], u); while (1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = compoundw(n)); if ((x == xx) && (y == yy), return(n)); if (xx > x, ok = 0); n++;); u = x; x = y - u; y = u;);} \\ similar to A120873
    wrow(p) = row(wpair(p));
    prodpair(v1, v2) = my(j1=v1[1], j2 = v2[1], k1 = v1[2], k2 = v2[2]); [j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2];
    pair(n) = [lowerw(n+1), n];
    T(n, k) = my(pn = pair(n), pk = pair(k), px = prodpair(pn, pk)); wrow(px)-1; \\ Michel Marcus, Sep 18 2022

Formula

A(x,y) = g(j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2), where j1 = A035336(x+1), j2 = A035336(y+1), k1 = A003622(x+1), k2 = A003622(y+1) and g(j,k) = (if j = A000201(k+1) then k otherwise g(k,j-k)).
A(x,y) = A(y,x).
A(x,0) = x.
A(x, A(y,z)) = A(A(x,y), z).
A022344(A(x,y)) = A022344(x) * A022344(y).
A(A019586(x), A019586(y)) = A019586(A101330(x,y)). (conjectured)
Showing 1-10 of 12 results. Next