cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A101863 Main diagonal of A101858.

Original entry on oeis.org

2, 13, 25, 52, 89, 117, 170, 208, 277, 356, 410, 505, 610, 680, 801, 881, 1018, 1165, 1261, 1424, 1530, 1709, 1898, 2020, 2225, 2440, 2578, 2809, 2957, 3204, 3461, 3625, 3898, 4181, 4361, 4660, 4850, 5165, 5490, 5696, 6037, 6253, 6610, 6977, 7209, 7592, 7985
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#^2 + Floor[#*GoldenRatio]^2 &, 100] (* Paolo Xausa, Mar 20 2024 *)

Formula

a(n) = n^2 + floor(n*(1 + sqrt(5))/2)^2. - Paolo Xausa, Mar 20 2024

A101865 Third row of A101858.

Original entry on oeis.org

7, 18, 25, 36, 47, 54, 65, 72, 83, 94, 101, 112, 123, 130, 141, 148, 159, 170, 177, 188, 195, 206, 217, 224, 235, 246, 253, 264, 271, 282, 293, 300, 311, 322, 329, 340, 347, 358, 369, 376, 387, 394, 405, 416, 423, 434, 445, 452, 463, 470, 481, 492, 499, 510, 517, 528, 539
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

A101864 Wythoff BB numbers.

Original entry on oeis.org

5, 13, 18, 26, 34, 39, 47, 52, 60, 68, 73, 81, 89, 94, 102, 107, 115, 123, 128, 136, 141, 149, 157, 162, 170, 178, 183, 191, 196, 204, 212, 217, 225, 233, 238, 246, 251, 259, 267, 272, 280, 285, 293, 301, 306, 314, 322, 327, 335, 340, 348, 356, 361, 369, 374, 382, 390, 395
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Comments

a(n)-3 are also the positions of 1 in A188436. - Federico Provvedi, Nov 22 2018
The asymptotic density of this sequence is 1/phi^4 = A094214^4 = 0.145898... . - Amiram Eldar, Mar 24 2025

Crossrefs

Second row of A101858.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.

Programs

  • Maple
    b:=n->floor(n*((1+sqrt(5))/2)^2): seq(b(b(n)),n=1..60); # Muniru A Asiru, Dec 05 2018
  • Mathematica
    b[n_] := Floor[n * GoldenRatio^2]; a[n_] := b[b[n]]; Array[a, 60] (* Amiram Eldar, Nov 22 2018 *)
  • Python
    from sympy import S
    for n in range(1,60): print(int(S.GoldenRatio**2*(int(n*S.GoldenRatio**2))), end=', ') # Stefano Spezia, Dec 06 2018

Formula

a(n) = B(B(n)), n>=1, with B(k)=A001950(k) (Wythoff B-numbers). a(0)=0 with B(0)=0.

A033891 a(n) = Fibonacci(4*n+3).

Original entry on oeis.org

2, 13, 89, 610, 4181, 28657, 196418, 1346269, 9227465, 63245986, 433494437, 2971215073, 20365011074, 139583862445, 956722026041, 6557470319842, 44945570212853, 308061521170129, 2111485077978050
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 7*a(n-1) - a(n-2). - Floor van Lamoen, Dec 10 2001
G.f.: (2-x)/(1-7*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = A167816(4*n+3). - Reinhard Zumkeller, Nov 13 2009
a(n) = Fibonacci(2*n+2)^2 + Fibonacci(2*n+1)^2. - Gary Detlefs, Oct 12 2011
a(n) = 2*A004187(n+1) - A004187(n). - R. J. Mathar, Nov 26 2011
a(n) = A004187(n+1) + A049685(n). - Yuriy Sibirmovsky, Sep 15 2016
From Peter Bala, Aug 11 2022: (Start)
Let n ** m = n*m + floor(phi*n)*floor(phi*m), where phi = (1 + sqrt(5))/2, denote the Porta-Stolarsky star product of the integers n and m (see A101858). Then a(n) = 2 ** 2 ** ... ** 2 (n+1 factors).
a(2*n+1) = a(n) ** a(n) = Fibonacci(8*n+7); a(3*n+2) = a(n) ** a(n) ** a(n) = Fibonacci(12*n+11) and so on. (End)

A101866 Array read by antidiagonals: Arnoux's product T(n,k) = n * k = nk + ceiling(phi n) ceiling(phi k), where phi = (1 + sqrt(5))/2 ; m, n >= 1.

Original entry on oeis.org

5, 10, 10, 13, 20, 13, 18, 26, 26, 18, 23, 36, 34, 36, 23, 26, 46, 47, 47, 46, 26, 31, 52, 60, 65, 60, 52, 31, 34, 62, 68, 83, 83, 68, 62, 34, 39, 68, 81, 94, 106, 94, 81, 68, 39, 44, 78, 89, 112, 120, 120, 112, 89, 78, 44, 47, 88, 102, 123, 143, 136, 143, 123, 102, 88, 47, 52
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Comments

Row 1 / column 1 (given in A101868) = positions of 1 in A188009, viz.,
A188009 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ...), A101868 = (5, 10, 13, 18, 23, 26, 31, 34, 39, 44, 47, 52, 57, ...). - Clark Kimberling and John W. Layman, Mar 19 2011, corrected and edited by M. F. Hasler, Oct 12 2017
By definition, the array is symmetric, so row n = column n. Row 1 is essentially the same as A188434: T(n,1) = A101868(n) = A188434(n+1). - M. F. Hasler, Oct 12 2017
This product is commutative but is not associative and does not distribute over addition. - Peter Bala, Aug 13 2022

Examples

			   5 10 13 18  23 ...
  10 20 26 36  46
  13 26 34 47  60
  18 36 47 65  83
  23 46 60 83 106
  ...
		

Crossrefs

Cf. A101858, A101330, A101385, A101633 for similarly defined products.
Main diagonal is A101867.
First 3 rows are A101868, A101869, A101870.
Cf. A001622.

Programs

  • Mathematica
    A101866[n_, k_] := n*k + Ceiling[n*GoldenRatio]*Ceiling[k*GoldenRatio];
    Table[A101866[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
  • PARI
    T(n, k) = my(phi = (1+sqrt(5))/2); n*k + ceil(phi*n)*ceil(phi*k); \\ Michel Marcus, Mar 29 2016

A101330 Array read by antidiagonals: T(n, k) = Knuth's Fibonacci (or circle) product of n and k ("n o k"), n >= 1, k >= 1.

Original entry on oeis.org

3, 5, 5, 8, 8, 8, 11, 13, 13, 11, 13, 18, 21, 18, 13, 16, 21, 29, 29, 21, 16, 18, 26, 34, 40, 34, 26, 18, 21, 29, 42, 47, 47, 42, 29, 21, 24, 34, 47, 58, 55, 58, 47, 34, 24, 26, 39, 55, 65, 68, 68, 65, 55, 39, 26, 29, 42, 63, 76, 76, 84, 76, 76, 63, 42, 29, 32, 47
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). (The eps(i) are 0 or 1 and no two consecutive eps(i) are both 1.) Then the Fibonacci (or circle) product of n and k is n o k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j} (= T(n,k)).
The Zeckendorf expansion can be written n = Sum_{i=1..k} F(a_i), where a_{i+1} >= a_i + 2. In this formulation, the product becomes: if n = Sum_{i=1..k} F(a_i) and m = Sum_{j=1..l} F(b_j) then n o m = Sum_{i=1..k} Sum_{j=1..l} F(a_i + b_j).
Knuth shows that this multiplication is associative. This is not true if we change the product to n X k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j-2}, see A101646. Of course 1 is not a multiplicative identity here, whereas it is in A101646.
The papers by Arnoux, Grabner et al. and Messaoudi discuss this sequence and generalizations.

Examples

			Array begins:
   3   5   8  11   13   16   18   21   24 ...
   5   8  13  18   21   26   29   34   39 ...
   8  13  21  29   34   42   47   55   63 ...
  11  18  29  40   47   58   65   76   87 ...
  13  21  34  47   55   68   76   89  102 ...
  16  26  42  58   68   84   94  110  126 ...
  18  29  47  65   76   94  105  123  141 ...
  21  34  55  76   89  110  123  144  165 ...
  24  39  63  87  102  126  141  165  189 ...
  ...........................................
		

Crossrefs

See A101646 and A135090 for other versions.
Main diagonal is A101332.
Rows: A026274 (row 1), A101345 (row 2), A101642 (row 3).
Cf. A101385, A101633, A101858 for related definitions of product.

Programs

  • Maple
    h := n -> floor(2*(n + 1)/(sqrt(5) + 3)):  # A060144(n+1)
    T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
    seq(print(seq(T(n, k), k = 1..9)), n = 1..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfp[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[i + j + 2], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *)
    Flatten[ Table[ kfp[i, n - i], {n, 2, 13}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *)
    A101330[n_, k_]:=3*n*k-n*Floor[(k+1)/GoldenRatio^2]-k*Floor[(n+1)/GoldenRatio^2];
    Table[A101330[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)

Formula

T(n, k) = 3*n*k - n*floor((k+1)/phi^2) - k*floor((n+1)/phi^2). For proof see link. - Fred Lunnon, May 19 2008
T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024

Extensions

More terms from David Applegate, Jan 26 2005

A134497 a(n) = Fibonacci(6n+5).

Original entry on oeis.org

5, 89, 1597, 28657, 514229, 9227465, 165580141, 2971215073, 53316291173, 956722026041, 17167680177565, 308061521170129, 5527939700884757, 99194853094755497, 1779979416004714189, 31940434634990099905, 573147844013817084101, 10284720757613717413913
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(6*n +5): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
    
  • Mathematica
    Table[Fibonacci[6n+5], {n, 0, 30}]
    Take[Fibonacci[Range[100]],{5,-1,6}] (* Harvey P. Dale, Jun 18 2013 *)
  • PARI
    a(n)=fibonacci(6*n+5) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    Vec((5-x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016

Formula

G.f.: ( 5-x ) / ( 1-18*x+x^2 ). a(n) = 5*A049660(n+1)-A049660(n). - R. J. Mathar, Apr 17 2011
a(n) = A000045(A016969(n)). - Michel Marcus, Nov 08 2013
a(n) = ((25-11*sqrt(5)+(9+4*sqrt(5))^(2*n)*(25+11*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = 5*S(n, 18) - S(n-1, 18), n >= 0, with the Chebyshev S-polynomials S(n-1, 18) = A049660(n). (See the g.f.) - Wolfdieter Lang, Jul 10 2018
From Peter Bala, Aug 11 2022: (Start)
Let n ** m = n*m + floor(phi*n)*floor(phi*m), where phi = (1 + sqrt(5))/2, denote the Porta-Stolarsky star product of the integers n and m (see A101858). Then a(n) = 5 ** 5 ** ... ** 5 (n+1 factors).
a(2*n+1) = a(n) ** a(n) = Fibonacci(12*n+11); a(3*n+2) = a(n) ** a(n) ** a(n) = Fibonacci(18*n+17) and so on. (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A219875 Multiplication table of the operation "n o m" = n*m + ceiling(n/phi)* ceiling(m/phi), with phi = (1+sqrt(5))/2, read by antidiagonals.

Original entry on oeis.org

2, 4, 4, 5, 8, 5, 7, 10, 10, 7, 9, 14, 13, 14, 9, 10, 18, 18, 18, 18, 10, 12, 20, 23, 25, 23, 20, 12, 13, 24, 26, 32, 32, 26, 24, 13, 15, 26, 31, 36, 41, 36, 31, 26, 15, 17, 30, 34, 43, 46, 46, 43, 34, 30, 17, 18, 34, 39, 47, 55, 52, 55, 47, 39, 34, 18
Offset: 1

Views

Author

Michel Marcus, Dec 01 2012

Keywords

Comments

Like A101866, this operation is associative.
First rows of the table are:
1: 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, ...
2: 4, 8, 10, 14, 18, 20, 24, 26, 30, 34, ...
3: 5, 10, 13, 18, 23, 26, 31, 34, 39, 44, ...
4: 7, 14, 18, 25, 32, 36, 43, 47, 54, 61, ...
5: 9, 18, 23, 32, 41, 46, 55, 60, 69, 78, ...
6:10, 20, 26, 36, 46, 52, 62, 68, 78, 88, ...
7:12, 24, 31, 43, 55, 62, 74, 81, 93, 105, ...
8:13, 26, 34, 47, 60, 68, 81, 89, 102, 115, ...
9:15, 30, 39, 54, 69, 78, 93, 102, 117, 132, ...
Row 1 is A004956.
Row 3 is A101868.

Crossrefs

Cf. A001622, A004956, A101385, A101858, A101866, A101868, A371381 (main diagonal).

Programs

  • Mathematica
    A219875[n_, m_] := n*m + Ceiling[n / GoldenRatio] * Ceiling[m / GoldenRatio];
    Table[A219875[n-m+1, m], {n, 15}, {m, n}] (* Paolo Xausa, Mar 20 2024 *)
  • PARI
    prod(m,n) = {phi = (1+sqrt(5))/2; return (m*n + ceil(m/phi)*ceil(n/phi));}

A295573 Array read by upwards antidiagonals: T(n,k) = nk + floor(phi n) ceiling(phi k) where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

3, 8, 6, 11, 16, 8, 16, 22, 21, 11, 21, 32, 29, 29, 14, 24, 42, 42, 40, 37, 16, 29, 48, 55, 58, 51, 42, 19, 32, 58, 63, 76, 74, 58, 50, 21, 37, 64, 76, 87, 97, 84, 69, 55, 24, 42, 74, 84, 105, 111, 110, 100, 76, 63, 27, 45, 84, 97, 116, 134, 126, 131, 110, 87, 71, 29, 50, 90, 110, 134, 148, 152, 150, 144, 126, 98, 76, 32
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2017

Keywords

Comments

This is a hybrid of the Porta-Stolarsky star product (A101858) and the Arnoux product (A101866)

Examples

			The array begins:
3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, ...
8, 16, 21, 29, 37, 42, 50, 55, 63, 71, 76, 84, ...
11, 22, 29, 40, 51, 58, 69, 76, 87, 98, 105, 116, ...
16, 32, 42, 58, 74, 84, 100, 110, 126, 142, 152, 168, ...
21, 42, 55, 76, 97, 110, 131, 144, 165, 186, 199, 220, ...
24, 48, 63, 87, 111, 126, 150, 165, 189, 213, 228, 252, ...
29, 58, 76, 105, 134, 152, 181, 199, 228, 257, 275, 304, ...
32, 64, 84, 116, 148, 168, 200, 220, 252, 284, 304, 336, ...
...
		

Crossrefs

Cf. A001622, A101858, A101866, A371382 (main diagonal).

Programs

  • Maple
    T := proc(n, k) local phi;
            phi := (1+sqrt(5))/2 ;
            n*k+floor(n*phi)*ceil(phi*k) ;
    end proc:
    for n from 1 to 12 do
    lprint([seq(T(n-i+1,i),i=1..n)]);
    od: # by antidiagonals
    for n from 1 to 12 do
    lprint([seq(T(n,i),i=1..12)]);
    od: # by rows
  • Mathematica
    A295573[n_, k_] := n*k + Floor[n * GoldenRatio] * Ceiling[k * GoldenRatio];
    Table[A295573[n-k+1,k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
Showing 1-9 of 9 results.