A101334 a(n) = n^n - (n+1)^(n-1).
0, 0, 1, 11, 131, 1829, 29849, 561399, 11994247, 287420489, 7642052309, 223394306387, 7123940054219, 246181194216957, 9165811757198641, 365836296342931439, 15584321022199735823, 705800730789742512401, 33866021217511735389485, 1716275655660313589123979
Offset: 0
Keywords
Examples
a(3) = 3^3 - 4^2 = 27-16 = 11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..386
- Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, and Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008.
- Luca Ferrari and Francesco Verciani, On the enumeration of permutation-invariant and complete Naples parking functions, arXiv:2411.06876 [math.CO], 2024. See p. 11.
Programs
-
Mathematica
ReplacePart[Table[n^n-(n+1)^(n-1),{n,0,nn}],0,1] (* Geoffrey Critzer, Jan 11 2013 *)
-
PARI
for(x=1,20,print( x^x-(x+1)^(x-1) ))
-
Python
print([n**n - (n+1)**(n-1) for n in range(33)]) # Alex Ratushnyak, Aug 06 2012
Formula
E.g.f.: 1/(1-T(x)) - exp(T(x)) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Jan 11 2013
a(n) = Sum_{k>0} A264902(n,k). - Alois P. Heinz, Nov 29 2015
Extensions
a(0) prepended by Alex Ratushnyak, Aug 06 2012
Comments