cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101350 Triangle read by rows: T(n,k) = number of k-matchings in the graph obtained by a zig-zag triangulation of a convex n-gon, T(0,0)=T(1,0)=T(2,0)=T(2,1)=1 (n > 2, 0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 5, 2, 1, 7, 7, 1, 9, 16, 3, 1, 11, 29, 15, 1, 13, 46, 43, 5, 1, 15, 67, 95, 30, 1, 17, 92, 179, 104, 8, 1, 19, 121, 303, 271, 58, 1, 21, 154, 475, 591, 235, 13, 1, 23, 191, 703, 1140, 705, 109, 1, 25, 232, 995, 2010, 1746, 506, 21, 1, 27, 277, 1359, 3309, 3780
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2004

Keywords

Examples

			T(5,2)=7 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have seven 2-matchings: {AB,CD},{AB,DE},{BC,AD},{BC,DE},{BC,EA},{CD,EA} and {DE,AC}.
Triangle begins:
  1;
  1;
  1,  1;
  1,  3;
  1,  5,  2;
  1,  7,  7;
  1,  9, 16,  3;
  1, 11, 29, 15;
  1, 13, 46, 43, 5;
  ...
		

Crossrefs

Row sums yield A000078 (the tetranacci numbers). T(2n+1, n) = A023610(n) (n > 0). T(2n, n) = A000045(n+1) (the Fibonacci numbers).

Programs

  • Maple
    G:=1/(1-z-t*z^2-t*z^3-t^2*z^4):Gserz:=simplify(series(G,z=0,18)):P[0]:=1: for n from 1 to 16 do P[n]:=sort(coeff(Gserz,z^n)) od:for n from 0 to 16 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od;# yields the sequence in triangular form
  • PARI
    s(n) = 1/(1-x-y*x^2-y*x^3-y^2*x^4) + O(x^n);
    my(gf=Pol(s(20))); for(n=0, poldegree(gf), my(p=polcoeff(gf,n)); for(k=0, poldegree(p), print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 04 2017

Formula

G.f.: 1/(1 - z - tz^2 - tz^3 - t^2z^4).