cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101351 a(n) = 2^n-1 + Fibonacci(n).

Original entry on oeis.org

2, 4, 9, 18, 36, 71, 140, 276, 545, 1078, 2136, 4239, 8424, 16760, 33377, 66522, 132668, 264727, 528468, 1055340, 2108097, 4212014, 8417264, 16823583, 33629456, 67230256, 134414145, 268753266, 537385140, 1074573863, 2148829916, 4297145604, 8593459169
Offset: 1

Views

Author

Jorge Coveiro, Dec 25 2004

Keywords

Crossrefs

Programs

  • Maple
    seq(2^x-1+fibonacci(x),x=1..30);
  • Mathematica
    Table[2^n-1+Fibonacci[n],{n,30}] (* or *) LinearRecurrence[{4,-4,-1,2},{2,4,9,18},30] (* Harvey P. Dale, Aug 24 2012 *)
  • PARI
    Vec(x*(2-4*x+x^2)/((1-x)*(1-2*x)*(1-x-x^2)) + O(x^30)) \\ Colin Barker, Nov 02 2016
  • Sage
    [gaussian_binomial(n,1,2)+fibonacci (n) for n in range(1,31)] # Zerinvary Lajos, May 29 2009
    

Formula

a(n) = 4*a(n-1) -4*a(n-2) -a(n-3) +2*a(n-4). G.f.: x*(2-4*x+x^2)/((x-1) * (2*x-1) * (1-x-x^2)). - R. J. Mathar, Feb 06 2010
a(n) = ((1+sqrt(5))^n-(1-sqrt(5))^n)/(2^n*sqrt(5)) + 2^n - 1. - Colin Barker, Nov 02 2016

Extensions

Offset changed to 1 by Colin Barker, Nov 02 2016