A102506
Numbers n such that for some positive number k, z=n+ik is a complex multiperfect number; that is, z divides sigma(z), where sigma is the sum of divisors function extended to the complex numbers.
Original entry on oeis.org
1, 5, 6, 10, 12, 28, 60, 72, 100, 108, 120, 140, 150, 204, 263, 300, 526, 600, 672, 720, 912, 1200, 1470, 1520, 1704, 3600, 4560, 4680, 4828, 5584, 5880, 6240, 6312
Offset: 1
For n=1, we have z=1+3i. The divisors of z are 1, 1+i, 1+3i and 2+i. Hence sigma(z)=5+5i and sigma(z)/z = 2-i.
Cf.
A102507. Note that
A101367 and
A101366 use Mathematica's Divisors function, the sum of the first-quadrant divisors, which does not enjoy the nice multiplicative properties of Spira's sigma function.
-
lst={}; Do[z=n+k*I; s=DivisorSigma[1, z]; If[Mod[s, z]==0, AppendTo[lst, z]; Print[{z, s, s/z}]], {n, 1200}, {k, 10000}]; Re[lst]
A102531
Real part of absolute Gaussian perfect numbers, in order of increasing magnitude.
Original entry on oeis.org
3, 15, 6, 19, 111, 91, 159, 72, 472, 904, 2584, 1616, 999, 4328, 702, 4424, 7048, 7328, 2474, 9352, 7144, 7240, 5117, 739, 6327, 15128, 13168, 1263, 14280, 3224, 21704, 15160, 21992, 14044, 23132, 9135, 23656, 24614, 7272, 15464, 9040, 28424, 30956, 14728, 32399
Offset: 1
For z=3+7i, we have sigma(z)-z = 7+3i, which has the same magnitude as z.
See
A102532 for the imaginary part.
-
lst={}; nn=1000; Do[z=a+b*I; If[Abs[z]<=nn && Abs[(DivisorSigma[1, z]-z)] == Abs[z], AppendTo[lst, {Abs[z]^2, z}]], {a, nn}, {b, nn}]; Re[Transpose[Sort[lst]][[2]]]
A102532
Imaginary part of absolute Gaussian perfect numbers, in order of increasing magnitude.
Original entry on oeis.org
7, 42, 57, 82, 78, 189, 341, 549, 664, 1048, 1016, 3776, 4072, 1672, 5049, 3816, 1128, 368, 7097, 2504, 6816, 7912, 10743, 12605, 12606, 248, 10392, 16853, 15208, 20824, 344, 15688, 392, 18076, 1340, 22302, 5912, 1573, 24392, 21328, 24896, 7048, 1220, 29288, 9678
Offset: 1
-
lst={}; nn=1000; Do[z=a+b*I; If[Abs[z]<=nn && Abs[(DivisorSigma[1, z]-z)] == Abs[z], AppendTo[lst, {Abs[z]^2, z}]], {a, nn}, {b, nn}]; Im[Transpose[Sort[lst]][[2]]]
A101366
Perfect Abs: Imaginary part of complex z such that Abs[(Total[Divisors[z]]-z)]=Abs[z].
Original entry on oeis.org
3, 7, 8, 42, 48, 57, 33, 82, 78, 77, 83, 189, 154, 92, 321, 341, 549, 664, 106, 1034, 2929, 4072, 5049, 3037, 6957, 7097, 5051
Offset: 0
The divisors for 269+92i are: 1, 2+I, 3+4i, 6+5i, 7+2i, 7+16i, 12+11i, 13+34i, 17+126i, 32+47i, 39+2i, 269+92i. The (sum - k) is 139+248i. Abs[139+248i] == Abs[269+92i]
The sequence of complex z's is: 5+3i, 3+7i, 19+8i, 15+42i, 6+57i, 29+48i, 19+82i, 74+33i, 111+78i, 147+77i, 185+83i, 91+189i, 197+154i, 269+92i, 122+321i, 159+341i, 72+549i, ...
-
Im[Sort[Select[Flatten[Table[a + b I, {a, 1, 500}, {b, 1, 500}]], Abs[Total[Divisors[ # ]] - # ] == Abs[ # ] &], Abs[ #1] < Abs[ #2] &]]
Showing 1-4 of 4 results.
Comments