A102531 Real part of absolute Gaussian perfect numbers, in order of increasing magnitude.
3, 15, 6, 19, 111, 91, 159, 72, 472, 904, 2584, 1616, 999, 4328, 702, 4424, 7048, 7328, 2474, 9352, 7144, 7240, 5117, 739, 6327, 15128, 13168, 1263, 14280, 3224, 21704, 15160, 21992, 14044, 23132, 9135, 23656, 24614, 7272, 15464, 9040, 28424, 30956, 14728, 32399
Offset: 1
Keywords
Examples
For z=3+7i, we have sigma(z)-z = 7+3i, which has the same magnitude as z.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..76
- R. Spira, The Complex Sum Of Divisors, American Mathematical Monthly, 1961 Vol. 68, pp. 120-124.
Crossrefs
Programs
-
Mathematica
lst={}; nn=1000; Do[z=a+b*I; If[Abs[z]<=nn && Abs[(DivisorSigma[1, z]-z)] == Abs[z], AppendTo[lst, {Abs[z]^2, z}]], {a, nn}, {b, nn}]; Re[Transpose[Sort[lst]][[2]]]
Extensions
a(22)-a(45) from Amiram Eldar, Feb 10 2020
Comments