cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101374 a(n) = n*(n^3 - n + 2)/2.

Original entry on oeis.org

0, 1, 8, 39, 124, 305, 636, 1183, 2024, 3249, 4960, 7271, 10308, 14209, 19124, 25215, 32656, 41633, 52344, 64999, 79820, 97041, 116908, 139679, 165624, 195025, 228176, 265383, 306964, 353249, 404580, 461311, 523808, 592449, 667624, 749735, 839196
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2005

Keywords

Examples

			From _Bruno Berselli_, Oct 30 2017: (Start)
After 0:
1   =                     -(0) + (1);
8   =                 -(0 + 1) + (2 + 3 + 2^2);
39  =             -(0 + 1 + 2) + (3 + 4 + 5 + 6 + 7 + 8 + 3^2);
124 =         -(0 + 1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 15 + 4^2);
305 =     -(0 + 1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 24 + 5^2);
636 = -(0 + 1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 35 + 6^2), etc. (End)
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Programs

  • Magma
    [n*(n^3-n+2)/2: n in [0..40]]; // Vincenzo Librandi, May 26 2011
  • Mathematica
    Table[n (n^3 - n + 2)/2, {n, 0, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 8, 39, 124}, 50] (* Harvey P. Dale, Sep 28 2012 *)

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. - Harvey P. Dale, Sep 28 2012