A101412 Least number of odd squares that sum to n.
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 1
Examples
a(13) = 5: 13 = 1+1+1+1+9.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A101412 := proc(n) local lsq; lsq := [seq((2*j+1)^2,j=0..floor((sqrt(n)-1)/2))] ; lsq := convert(lsq,set) ; a := n ; for p in combinat[partition](n) do if convert(p,set) minus lsq = {} then a := min(a,nops(p)) ; fi; od: a ; end: for n from 1 do printf("%d,\n",A101412(n)) ; od: # R. J. Mathar, Aug 08 2009 # problem has optimal substructure: a:= proc(n) option remember; local r; r:= isqrt(n); `if`(r^2=n and irem(r, 2)=1, 1, min(seq(a(i)+a(n-i), i=1..n/2))) end: seq(a(n), n=1..120); # Alois P. Heinz, Jan 31 2011
-
Mathematica
a[n_] := a[n] = Module[{r}, r = Sqrt[n]; If[IntegerQ[r] && OddQ[r], 1, Min[Table[a[i]+a[n-i], {i, 1, Floor[n/2]}]]]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
-
PARI
a(n)={x=n-1;if(x%8>1,k=1+x%8);if(n%8==1,k=9;if(issquare(n)&&n%2==1,k=1));if(x%8==1,k=10;y=1;while(x>0,if(issquare(x)&&x%2==1,k=2);y=y+2;x=n-y^2));k;} \\ Jinyuan Wang, Jan 29 2019
Formula
From Jinyuan Wang, Jan 29 2019: (Start)
For n == 1 (mod 8), if n is a perfect square, a(n) = 1, otherwise a(n) = 9.
For n == 2 (mod 8), if n is a term in A097269, a(n) = 2, otherwise a(n) = 10.
For n == k (mod 8), k = 3,4,...,8, a(n) = k.
For positive integer x, a(72*x+42) = a(72*x+66) = 10. (End)
Extensions
More terms from R. J. Mathar, Aug 08 2009
More terms from Alois P. Heinz, Jan 30 2011