cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101427 Number of different cuboids with volume (pq)^n, where p,q are distinct prime numbers.

Original entry on oeis.org

1, 2, 8, 19, 42, 78, 139, 224, 350, 517, 744, 1032, 1405, 1862, 2432, 3115, 3942, 4914, 6067, 7400, 8954, 10729, 12768, 15072, 17689, 20618, 23912, 27571, 31650, 36150, 41131, 46592, 52598, 59149, 66312, 74088, 82549, 91694, 101600, 112267, 123774
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Column k=3 of A277239.

Programs

  • Mathematica
    a[n_] := Switch[Mod[n, 6], 0, n+1, 1|5, 3n/4 + 7/24, 2|4, n+2/3, 3, 3n/4 + 5/8] + n^4/24 + n^3/4 + 2n^2/3; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 06 2016, after Frederic Solbes' formula *)
  • PARI
    a(n) = if (n % 3, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2)/24, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2+8)/24); \\ Michel Marcus, Mar 18 2014

Formula

If n is a multiple of 3, a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2+8)/24, otherwise a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2)/24. - Frederic Solbes, Mar 18 2014
G.f.: -(x^6+3*x^4+4*x^3+3*x^2+1)/((x^2+x+1)*(x+1)^2*(x-1)^5). - Colin Barker, Mar 27 2014
From Daniel Mondot, Sep 20 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 12, n>=8.
a(n) = 4*a(n-6) - 6*a(n-12) + 4*a(n-18) - a(n-24) + 1296, n>=24. (End)

Extensions

Extended by Ray Chandler, Dec 17 2008
Edited by Ray Chandler, Dec 19 2008
a(0) = 1 prepended by Daniel Mondot, Sep 20 2016