A101479 Triangular matrix T, read by rows, where row n equals row (n-1) of T^(n-1) after appending '1' for the main diagonal.
1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 19, 9, 3, 1, 1, 191, 70, 18, 4, 1, 1, 2646, 795, 170, 30, 5, 1, 1, 46737, 11961, 2220, 335, 45, 6, 1, 1, 1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1, 25330125, 5051866, 758814, 92652, 9730, 924, 84, 8, 1, 1, 735180292, 132523155, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 3, 2, 1, 1; 19, 9, 3, 1, 1; 191, 70, 18, 4, 1, 1; 2646, 795, 170, 30, 5, 1, 1; 46737, 11961, 2220, 335, 45, 6, 1, 1; 1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; 25330125, 5051866, 758814, 92652, 9730, 924, 84, 8, 1, 1; 735180292, 132523155, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1; ... Row 4 starts with row 3 of T^3 which begins: 1; 3, 1; 6, 3, 1; 19, 9, 3, 1; ... row 5 starts with row 4 of T^4 which begins: 1; 4, 1; 10, 4, 1; 34, 14, 4, 1; 191, 70, 18, 4, 1; ... An ALTERNATE GENERATING METHOD is illustrated as follows. For row 4: Start with a '1' and append 2 zeros, take partial sums and append 1 zero, take partial sums thrice more, resulting in: 1, 0, 0; 1, 1, 1, 0; 1, 2, 3, 3; 1, 3, 6, 9; 1, 4,10,19. Final nonzero terms form row 4: [19,9,3,1,1]. For row 5: Start with a '1' and append 3 zeros, take partial sums and append 2 zeros, take partial sums and append 1 zero, take partial sums thrice more, resulting in: 1, 0, 0, 0; 1, 1, 1, 1, 0, 0; 1, 2, 3, 4, 4, 4, 0; 1, 3, 6,10,14, 18, 18; 1, 4,10,20,34, 52, 70; 1, 5,15,35,69,121,191; where the final nonzero terms form row 5: [191,70,18,4,1,1]. Likewise, for row 6: 1, 0, 0, 0, 0; 1, 1, 1, 1, 1, 0, 0, 0; 1, 2, 3, 4, 5, 5, 5, 5, 0, 0; 1, 3, 6,10, 15, 20, 25, 30, 30, 30, 0; 1, 4,10,20, 35, 55, 80,110, 140, 170, 170; 1, 5,15,35, 70,125,205,315, 455, 625, 795; 1, 6,21,56,126,251,456,771,1226,1851,2646; where the final nonzero terms form row 6: [2646,795,170,30,5,1,1]. Continuing in this way generates all rows of this triangle.
Links
- Alois P. Heinz, Rows n = 0..140, flattened (first 31 rows from Paul D. Hanna)
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; Matrix(n, (i,j)-> T(i-1,j-1))^(n-1) end: T:= proc(n,k) option remember; `if`(n=k, 1, `if`(k>n, 0, b(n)[n,k+1])) end: seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Apr 13 2020
-
Mathematica
b[n_] := b[n] = MatrixPower[Table[T[i-1, j-1], {i, n}, {j, n}], n-1]; T[n_, k_] := T[n, k] = If[n == k, 1, If[k > n, 0, b[n][[n, k+1]]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)
-
PARI
{T(n,k) = my(A=Mat(1),B); for(m=1,n+1, B=matrix(m,m); for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1, B[i,j] = (A^(i-2))[i-1,j]);)); A=B); return(A[n+1,k+1])} for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))
-
PARI
{T(n,k) = my(A=vector(n+1),p); A[1]=1; for(j=1,n-k-1, p=(n-1)*(n-2)/2-(n-j-1)*(n-j-2)/2; A = Vec((Polrev(A)+x*O(x^p))/(1-x))); A = Vec((Polrev(A) +x*O(x^p)) / (1-x) ); A[p+1]} for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))
Comments