A101514 Shifts one place left under the square binomial transform (A008459): a(0) = 1, a(n) = Sum_{k=0..n-1} C(n-1,k)^2*a(k).
1, 1, 2, 7, 35, 236, 2037, 21695, 277966, 4198635, 73558135, 1475177880, 33495959399, 853167955357, 24182881926558, 757554068775721, 26068954296880361, 980202973852646786, 40079727064364154465, 1774594774575753650941, 84756211791797266285252
Offset: 0
Keywords
Examples
The binomial transform of the rows of the term-wise product of this sequence with the rows of Pascal's triangle produces the symmetric square array A101515, in which the main diagonal equals this sequence shift left: BINOMIAL[1*1] = [(1),1,1,1,1,1,1,1,1,...], BINOMIAL[1*1,1*1] = [1,(2),3,4,5,6,7,8,9,...], BINOMIAL[1*1,1*2,2*1] = [1,3,(7),13,21,31,43,57,73,...], BINOMIAL[1*1,1*3,2*3,7*1] = [1,4,13,(35),77,146,249,393,...], BINOMIAL[1*1,1*4,2*6,7*4,35*1] = [1,5,21,77,(236),596,1290,...], BINOMIAL[1*1,1*5,2*10,7*10,35*5,236*1] = [1,6,31,146,596,(2037),...],... Thus the square binomial transform shifts this sequence one place left: a(5) = 236 = 1^2*(1) + 4^2*(1) + 6^2*(2) + 4^2*(7) + 1^2*(35), a(6) = 2037 = 1^2*(1) + 5^2*(1) + 10^2*(2) + 10^2*(7) + 5^2*(35) + 1^2*(236).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..330
- John M. Campbell, Semisimple algebras related to immaculate tableaux, arXiv:2507.02539 [math.CO], 2025. See p. 7.
Programs
-
Maple
a:= proc(n) option remember; if n<=0 then 1 else add(binomial(n-1,k)^2 *a(k), k=0..n-1) fi end: seq(a(n), n=0..25); # Alois P. Heinz, Sep 05 2008
-
Mathematica
a[0] = 1; a[n_] := Sum[Binomial[n - 1, k]^2 a[k], {k, 0, n - 1}]; Table[a[i], {i, 0, 20}] (* Philip B. Zhang, Oct 10 2014 *)
-
PARI
{a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)^2*a(k)))} for(n=0,20,print1(a(n),", "))
Formula
E.g.f. satisfies: B(x)/A(x) = Sum_{n>=0} x^n/n!^2 where A(x) = Sum_{n>=0} a(n)*x^n/n!^2 and B(x) = Sum_{n>=0} a(n+1)*x^n/n!^2. - Paul D. Hanna, Oct 10 2014
Extensions
Typo in definition corrected by Philip B. Zhang, Oct 10 2014
Comments