cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A101514 Shifts one place left under the square binomial transform (A008459): a(0) = 1, a(n) = Sum_{k=0..n-1} C(n-1,k)^2*a(k).

Original entry on oeis.org

1, 1, 2, 7, 35, 236, 2037, 21695, 277966, 4198635, 73558135, 1475177880, 33495959399, 853167955357, 24182881926558, 757554068775721, 26068954296880361, 980202973852646786, 40079727064364154465, 1774594774575753650941, 84756211791797266285252
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2004

Keywords

Comments

Equals the main diagonal of symmetric square array A101515 shift right.
Empirical: a(n) = sum((number of standard immaculate tableaux of shape m)^2, m|=n), where this sum is over all compositions m of n > 0. - John M. Campbell, Jul 07 2017

Examples

			The binomial transform of the rows of the term-wise product of this sequence with the rows of Pascal's triangle produces the symmetric square array A101515, in which the main diagonal equals this sequence shift left:
BINOMIAL[1*1] = [(1),1,1,1,1,1,1,1,1,...],
BINOMIAL[1*1,1*1] = [1,(2),3,4,5,6,7,8,9,...],
BINOMIAL[1*1,1*2,2*1] = [1,3,(7),13,21,31,43,57,73,...],
BINOMIAL[1*1,1*3,2*3,7*1] = [1,4,13,(35),77,146,249,393,...],
BINOMIAL[1*1,1*4,2*6,7*4,35*1] = [1,5,21,77,(236),596,1290,...],
BINOMIAL[1*1,1*5,2*10,7*10,35*5,236*1] = [1,6,31,146,596,(2037),...],...
Thus the square binomial transform shifts this sequence one place left:
a(5) = 236 = 1^2*(1) + 4^2*(1) + 6^2*(2) + 4^2*(7) + 1^2*(35),
a(6) = 2037 = 1^2*(1) + 5^2*(1) + 10^2*(2) + 10^2*(7) + 5^2*(35) + 1^2*(236).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; if n<=0 then 1 else
          add(binomial(n-1,k)^2 *a(k), k=0..n-1) fi
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 05 2008
  • Mathematica
    a[0] = 1;
    a[n_] := Sum[Binomial[n - 1, k]^2 a[k], {k, 0, n - 1}];
    Table[a[i], {i, 0, 20}] (* Philip B. Zhang, Oct 10 2014 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)^2*a(k)))}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. satisfies: B(x)/A(x) = Sum_{n>=0} x^n/n!^2 where A(x) = Sum_{n>=0} a(n)*x^n/n!^2 and B(x) = Sum_{n>=0} a(n+1)*x^n/n!^2. - Paul D. Hanna, Oct 10 2014

Extensions

Typo in definition corrected by Philip B. Zhang, Oct 10 2014

A101515 Symmetric square array, read by antidiagonals, such that the inverse binomial transform of row n forms the sequence: {C(n,k)*A101514(k), 0<=k<=n}, where A101514 equals the main diagonal shift right.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 35, 21, 6, 1, 1, 7, 31, 77, 77, 31, 7, 1, 1, 8, 43, 146, 236, 146, 43, 8, 1, 1, 9, 57, 249, 596, 596, 249, 57, 9, 1, 1, 10, 73, 393, 1290, 2037, 1290, 393, 73, 10, 1, 1, 11, 91, 585, 2486, 5772, 5772, 2486, 585
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2004

Keywords

Comments

The main diagonal equals A101514 shift one place left. The antidiagonal sums form A101516.

Examples

			Rows begin:
[_1,1,1,1,1,1,1,1,1,...],
[1,_2,3,4,5,6,7,8,9,...],
[1,3,_7,13,21,31,43,57,73,...],
[1,4,13,_35,77,146,249,393,585,...],
[1,5,21,77,_236,596,1290,2486,4387,...],
[1,6,31,146,596,_2037,5772,13987,29987,...],
[1,7,43,249,1290,5772,_21695,67943,181811,...],
[1,8,57,393,2486,13987,67943,_277966,951051,...],
[1,9,73,585,4387,29987,181811,951051,_4198635,...],...
The inverse binomial transform of the rows of this array are generated
from the products of the main diagonal with rows of Pascal's triangle:
BINOMIAL[1*1] = [_1,1,1,1,1,1,1,1,1,...],
BINOMIAL[1*1,1*1] = [1,_2,3,4,5,6,7,8,9,...],
BINOMIAL[1*1,1*2,2*1] = [1,3,_7,13,21,31,43,57,73,...],
BINOMIAL[1*1,1*3,2*3,7*1] = [1,4,13,_35,77,146,249,393,...],
BINOMIAL[1*1,1*4,2*6,7*4,35*1] = [1,5,21,77,_236,596,1290,...],
BINOMIAL[1*1,1*5,2*10,7*10,35*5,236*1] = [1,6,31,146,596,_2037,...],...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,if(n==0 || k==0,1,if(n>k,T(k,n), 1+sum(j=1,k,binomial(k,j)*binomial(n,j)*T(j-1,j-1));)))
Showing 1-2 of 2 results.