cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101561 a(n) = (-1)^n * [x^n] Sum_{k>=1} x^(k-1)/(1+3*x^k).

Original entry on oeis.org

1, 2, 10, 29, 82, 236, 730, 2216, 6571, 19604, 59050, 177410, 531442, 1593596, 4783060, 14351123, 43046722, 129133838, 387420490, 1162281098, 3486785140, 10460294156, 31381059610, 94143358424, 282429536563, 847288078004, 2541865834900, 7625599078610
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101561:= func< n | (&+[(-1)^(n-k)*3^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101561(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    a[n_]:= Sum[(-1)^(n-k) * If[Mod[n+1, k+1]==0, 1, 0] * 3^k, {k, 0, n}];
    Table[a[n], {n, 0, 25}] (* James C. McMahon, Jan 01 2024 *)
    A101561[n_]:= (-1)^n*DivisorSum[n+1, (-3)^(#-1) &];
    Table[A101561[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101561(n): return sum((-1)^(n+k)*3^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101561(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-3)^(d-1). - G. C. Greubel, Jun 25 2024