cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A344818 a(n) = Sum_{k=1..n} floor(n/k) * (-3)^(k-1).

Original entry on oeis.org

1, -1, 9, -20, 62, -174, 556, -1660, 4911, -14693, 44357, -133053, 398389, -1195207, 3587853, -10763270, 32283452, -96850386, 290570104, -871710994, 2615074146, -7845220010, 23535839600, -70607518824, 211822017739, -635466060265, 1906399774635, -5719199303975
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Crossrefs

Column k=3 of A344824.
Cf. A101561.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), this sequence (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), A332533 (q=n).

Programs

  • Magma
    A344818:= func< n | (&+[Floor(n/k)*(-3)^(k-1): k in [1..n]]) >;
    [A344818(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    a[n_] := Sum[(-3)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*(-3)^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (-3)^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+3*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-3)^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344818(n): return sum((n//k)*(-3)^(k-1) for k in range(1,n+1))
    [A344818(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} (-3)^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 + 3*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} (-3)^(k-1) * x^k/(1 - x^k).
a(n) ~ -(-1)^n * 3^n / 4. - Vaclav Kotesovec, Jun 05 2021

A101562 a(n) = (-1)^n * coefficient of x^n in Sum_{k>=1} x^(k-1)/(1+4*x^k).

Original entry on oeis.org

1, 3, 17, 67, 257, 1011, 4097, 16451, 65553, 261891, 1048577, 4195379, 16777217, 67104771, 268435729, 1073758275, 4294967297, 17179804659, 68719476737, 274878168899, 1099511631889, 4398045462531, 17592186044417, 70368748389427
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101562:= func< n | (&+[(-1)^(n-k)*4^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101562(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    A101562[n_]:= (-1)^n*DivisorSum[n+1, (-4)^(#-1) &];
    Table[A101562[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101562(n): return sum((-1)^(n+k)*4^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101562(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * 4^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-4)^(d-1). - G. C. Greubel, Jun 25 2024

A101563 a(n) = (-1)^n * coefficient of x^n in Sum_{k>=1} x^(k-1)/(1+10*x^k).

Original entry on oeis.org

1, 9, 101, 1009, 10001, 99909, 1000001, 10001009, 100000101, 999990009, 10000000001, 100000100909, 1000000000001, 9999999000009, 100000000010101, 1000000010001009, 10000000000000001, 99999999900099909
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101563:= func< n | (&+[(-1)^(n-k)*(10)^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101563(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    A101563[n_]:= (-1)^n*DivisorSum[n+1, (-10)^(#-1) &];
    Table[A101563[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101563(n): return sum((-1)^(n+k)*(10)^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101563(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (10)^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-10)^(d-1). - G. C. Greubel, Jun 25 2024

A383003 a(n) = Sum_{d|n} (-n)^(d-1).

Original entry on oeis.org

1, -1, 10, -67, 626, -7745, 117650, -2097671, 43046803, -999990009, 25937424602, -743008621115, 23298085122482, -793714765724621, 29192926025441476, -1152921504875286543, 48661191875666868482, -2185911559727678460653, 104127350297911241532842
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-n)^(d-1));

Formula

a(n) = (1/n) * A383010(n).
a(n) = [x^n] Sum_{k>=1} log(1 + n*x^k) / k.
a(n) = [x^n] Sum_{k>=1} x^k / (1 + n*x^k).
Showing 1-4 of 4 results.