cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A059851 a(n) = n - floor(n/2) + floor(n/3) - floor(n/4) + ... (this is a finite sum).

Original entry on oeis.org

0, 1, 1, 3, 2, 4, 4, 6, 4, 7, 7, 9, 7, 9, 9, 13, 10, 12, 12, 14, 12, 16, 16, 18, 14, 17, 17, 21, 19, 21, 21, 23, 19, 23, 23, 27, 24, 26, 26, 30, 26, 28, 28, 30, 28, 34, 34, 36, 30, 33, 33, 37, 35, 37, 37, 41, 37, 41, 41, 43, 39, 41, 41, 47, 42, 46, 46, 48, 46, 50, 50, 52, 46, 48, 48
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Feb 27 2001

Keywords

Comments

As n goes to infinity we have the asymptotic formula: a(n) ~ n * log(2).
More precisely, a(n) = n * log(2) + O(n^(131/416) * (log n)^(26947/8320)). - V Sai Prabhav, Jun 02 2025

Examples

			a(5) = 4 because floor(5) - floor(5/2) + floor(5/3) - floor(5/4) + floor(5/5) - floor(5/6) + ... = 5 - 2 + 1 - 1 + 1 - 0 + 0 - 0 + ... = 4.
		

Crossrefs

Partial sums of A048272.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), this sequence (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), A332533 (q=n).

Programs

  • Magma
    A059851:= func< n | (&+[Floor(n/j)*(-1)^(j-1): j in [1..n]]) >;
    [A059851(n): n in [1..80]]; // G. C. Greubel, Jun 27 2024
    
  • Maple
    for n from 0 to 200 do printf(`%d,`, sum((-1)^(i+1)*floor(n/i), i=1..n)) od:
  • Mathematica
    f[list_, i_] := list[[i]]; nn = 200; a = Table[1, {n, 1, nn}]; b =
    Table[If[OddQ[n], 1, -1], {n, 1, nn}];Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] // Accumulate (* Geoffrey Critzer, Mar 29 2015 *)
    Table[Sum[Floor[n/k] - 2*Floor[n/(2*k)], {k, 1, n}], {n, 0, 100}] (* Vaclav Kotesovec, Dec 23 2020 *)
  • PARI
    { for (n=0, 10000, s=1; d=2; a=n; while ((f=floor(n/d)) > 0, a-=s*f; s=-s; d++); write("b059851.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 29 2009
    
  • Python
    from math import isqrt
    def A059851(n): return ((t:=isqrt(m:=n>>1))**2<<1)-(s:=isqrt(n))**2+(sum(n//k for k in range(1,s+1))-(sum(m//k for k in range(1,t+1))<<1)<<1) # Chai Wah Wu, Oct 23 2023
    
  • SageMath
    def A059851(n): return sum((n//j)*(-1)^(j-1) for j in range(1,n+1))
    [A059851(n) for n in range(81)] # G. C. Greubel, Jun 27 2024

Formula

From Vladeta Jovovic, Oct 15 2002: (Start)
a(n) = A006218(n) - 2*A006218(floor(n/2)).
G.f.: 1/(1-x)*Sum_{n>=1} x^n/(1+x^n). (End)
a(n) = Sum_{n/2 < k < =n} d(k) - Sum_{1 < =k <= n/2} d(k), where d(k) = A000005(k). Also, a(n) = number of terms among {floor(n/k)}, 1<=k<=n, that are odd. - Leroy Quet, Jan 19 2006
From Ridouane Oudra, Aug 15 2019: (Start)
a(n) = Sum_{k=1..n} (floor(n/k) mod 2).
a(n) = (1/2)*(n + A271860(n)).
a(n) = Sum_{k=1..n} round(n/(2*k)) - floor(n/(2*k)), where round(1/2) = 1. (End)
a(n) = 2*A263086(n) - 3*A006218(n). - Ridouane Oudra, Aug 17 2024

Extensions

More terms from James Sellers and Larry Reeves (larryr(AT)acm.org), Feb 27 2001

A268235 a(n) = Sum_{k=1..n} floor(n/k)*2^(k-1).

Original entry on oeis.org

1, 4, 9, 20, 37, 76, 141, 280, 541, 1072, 2097, 4192, 8289, 16548, 32953, 65860, 131397, 262764, 524909, 1049736, 2098381, 4196560, 8390865, 16781696, 33558929, 67117460, 134226585, 268452580, 536888037, 1073775900, 2147517725, 4295034280, 8590002605, 17180002736, 34359872001, 68719743792
Offset: 1

Views

Author

Benoit Cloitre and N. J. A. Sloane, Feb 05 2016

Keywords

Comments

This is the "floor transform" of the powers of 2.

Crossrefs

First differences give A034729.
Cf. A000079.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), this sequence (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), A332533 (q=n).

Programs

  • Magma
    A268235:= func< n | (&+[Floor(n/j)*2^(j-1): j in [1..n]]) >;
    [A268235(n): n in [1..40]]; // G. C. Greubel, Jun 27 2024
    
  • Maple
    # floor transform of a sequence
    ft:=proc(a) local b,n,j,k; b:=[];
    for n from 1 to nops(a) do j:=add(a[k]*floor(n/k),k=1..n); b:=[op(b),j]; od;
    b; end:
    ft([seq(2^i,i=0..50)]);
  • Mathematica
    Table[Sum[Floor[n/k] 2^(k - 1), {k, n}], {n, 36}] (* Michael De Vlieger, Feb 12 2017 *)
  • PARI
    a(n) = sum(k=1, n, (n\k)*2^(k-1)); \\ Michel Marcus, Feb 11 2017
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, 2^(d-1))); \\ Seiichi Manyama, May 29 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-2*x^k))/(1-x)) \\ Seiichi Manyama, May 29 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 2^(k-1)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, May 29 2021
    
  • SageMath
    def A268235(n): return sum((n//j)*2^(j-1) for j in range(1,n+1))
    [A268235(n) for n in range(1,41)] # G. C. Greubel, Jun 27 2024

Formula

a(n) ~ 2^n. - Vaclav Kotesovec, May 28 2021
From Seiichi Manyama, May 29 2021: (Start)
a(n) = Sum_{k=1..n} Sum_{d|k} 2^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 2*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 2^(k-1) * x^k/(1 - x^k). (End)
a(n) = Sum_{k=1..n} (2^floor(n/k) - 1). - Ridouane Oudra, Feb 03 2023

Extensions

Definition corrected by Matthew House, Feb 11 2017

A332533 a(n) = (1/n) * Sum_{k=1..n} floor(n/k) * n^k.

Original entry on oeis.org

1, 4, 15, 92, 790, 9384, 137326, 2397352, 48428487, 1111122360, 28531183329, 810554859732, 25239592620853, 854769763924104, 31278135039463245, 1229782938533709200, 51702516368332126932, 2314494592676172411516, 109912203092257573556274, 5518821052632117898282620
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2020

Keywords

Crossrefs

Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), this sequence (q=n).

Programs

  • Magma
    A332533:= func< n | (&+[Floor(n/j)*n^(j-1): j in [1..n]]) >;
    [A332533(n): n in [1..40]]; // G. C. Greubel, Jun 27 2024
    
  • Maple
    seq(add(n^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
  • Mathematica
    Table[(1/n) Sum[Floor[n/k] n^k, {k, 1, n}], {n, 1, 20}]
    Table[(1/n) Sum[Sum[n^d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
    Table[SeriesCoefficient[(1/(1 - x)) Sum[x^k/(1 - n x^k), {k, 1, n}], {x, 0, n}], {n, 1, 20}]
  • PARI
    a(n) = sum(k=1, n, (n\k)*n^k)/n; \\ Michel Marcus, Feb 16 2020
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, n^(d-1))); \\ Seiichi Manyama, May 29 2021
    
  • SageMath
    def A332533(n): return sum((n//j)*n^(j-1) for j in range(1,n+1))
    [A332533(n) for n in range(1,41)] # G. C. Greubel, Jun 27 2024

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} x^k / (1 - n*x^k).
a(n) = (1/n) * Sum_{k=1..n} Sum_{d|k} n^d.
a(n) ~ n^(n-1). - Vaclav Kotesovec, May 28 2021
a(n) = (1/(n-1)) * Sum_{k=1..n} (n^floor(n/k) - 1), for n>=2. - Ridouane Oudra, Mar 05 2023

A344814 a(n) = Sum_{k=1..n} floor(n/k) * 3^(k-1).

Original entry on oeis.org

1, 5, 15, 46, 128, 384, 1114, 3332, 9903, 29671, 88721, 266151, 797593, 2392649, 7175709, 21526834, 64573556, 193720536, 581141026, 1743422288, 5230207428, 15690619684, 47071679294, 141215037738, 423644574301, 1270933715189, 3812799550089, 11438398630159
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Comments

Partial sums of A034730.

Crossrefs

Programs

  • Magma
    A344814:= func< n | (&+[Floor(n/k)*3^(k-1): k in [1..n]]) >;
    [A344814(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Maple
    seq(add(3^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Feb 05 2023
  • Mathematica
    a[n_] := Sum[3^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*3^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, 3^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-3*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 3^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344814(n): return sum((n//k)*3^(k-1) for k in range(1,n+1))
    [A344814(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} 3^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 3*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 3^(k-1) * x^k/(1 - x^k).
a(n) ~ 3^n / 2. - Vaclav Kotesovec, Jun 05 2021
a(n) = (1/2) * Sum_{k=1..n} (3^floor(n/k) - 1). - Ridouane Oudra, Feb 05 2023

A344815 a(n) = Sum_{k=1..n} floor(n/k) * 4^(k-1).

Original entry on oeis.org

1, 6, 23, 92, 349, 1394, 5491, 21944, 87497, 349902, 1398479, 5593892, 22371109, 89484074, 357919803, 1431678080, 5726645377, 22906581142, 91626057879, 366504227292, 1466015859181, 5864063418866, 23456249463283, 93824997852744, 375299974563657, 1501199898183502
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Comments

Partial sums of A339684.

Crossrefs

Column k=4 of A344821.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), this sequence (q=4), A344816 (q=5), A332533 (q=n).

Programs

  • Magma
    A344815:= func< n | (&+[Floor(n/j)*4^(j-1): j in [1..n]]) >;
    [A344815(n): n in [1..40]]; // G. C. Greubel, Jun 27 2024
    
  • Maple
    seq(add(4^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Feb 16 2023
  • Mathematica
    a[n_] := Sum[4^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*4^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, 4^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-4*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 4^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344815(n): return sum((n//j)*4^(j-1) for j in range(1,n+1))
    [A344815(n) for n in range(1,41)] # G. C. Greubel, Jun 27 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} 4^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 4*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 4^(k-1) * x^k/(1 - x^k).
a(n) ~ 4^n / 3. - Vaclav Kotesovec, Jun 05 2021
a(n) = (1/3) * Sum_{k=1..n} (4^floor(n/k) - 1). - Ridouane Oudra, Feb 16 2023

A344816 a(n) = Sum_{k=1..n} floor(n/k) * 5^(k-1).

Original entry on oeis.org

1, 7, 33, 164, 790, 3946, 19572, 97828, 488479, 2442235, 12207861, 61039267, 305179893, 1525898649, 7629414925, 38147071306, 190734961932, 953674808838, 4768372074464, 23841860356470, 119209292012746, 596046459981502, 2980232250997128, 14901161254984784
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Comments

Partial sums of A339685.

Crossrefs

Column k=5 of A344821.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), this sequence (q=5), A332533 (q=n).

Programs

  • Magma
    A344816:= func< n | (&+[Floor(n/k)*5^(k-1): k in [1..n]]) >;
    [A344816(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Maple
    seq(add(5^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
  • Mathematica
    a[n_] := Sum[5^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*5^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, 5^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-5*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 5^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344816(n): return sum((n//k)*5^(k-1) for k in range(1,n+1))
    [A344816(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} 5^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 - 5*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} 5^(k-1) * x^k/(1 - x^k).
a(n) ~ 5^n / 4. - Vaclav Kotesovec, Jun 05 2021
a(n) = (1/4) * Sum_{k=1..n} (5^floor(n/k) - 1). - Ridouane Oudra, Mar 05 2023

A344817 a(n) = Sum_{k=1..n} floor(n/k) * (-2)^(k-1).

Original entry on oeis.org

1, 0, 5, -4, 13, -16, 49, -88, 173, -324, 701, -1384, 2713, -5416, 10989, -21916, 43621, -87224, 174921, -349872, 698773, -1397356, 2796949, -5593872, 11183361, -22366976, 44742149, -89483716, 178951741, -357903312, 715838513, -1431678040, 2863290285
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Crossrefs

Column k=2 of A344824.
Cf. A081295.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), this sequence (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), A332533 (q=n).

Programs

  • Magma
    A344817:= func< n | (&+[Floor(n/k)*(-2)^(k-1): k in [1..n]]) >;
    [A344817(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    a[n_] := Sum[(-2)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*(-2)^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (-2)^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+2*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-2)^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344817(n): return sum((n//k)*(-2)^(k-1) for k in range(1,n+1))
    [A344817(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} (-2)^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 + 2*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} (-2)^(k-1) * x^k/(1 - x^k).
a(n) ~ -(-1)^n * 2^n / 3. - Vaclav Kotesovec, Jun 05 2021

A344820 a(n) = Sum_{k=1..n} floor(n/k) * (-n)^(k-1).

Original entry on oeis.org

1, 0, 9, -52, 520, -6636, 102984, -1864600, 38741463, -909081740, 23775986069, -685854111804, 21633935838489, -740800448012044, 27368368159530285, -1085102592823737200, 45957792326631241516, -2070863582899905915336, 98920982783031811482920, -4993219047619535240997780
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Crossrefs

Diagonal of A344824.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): this sequence (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), A332533 (q=n).

Programs

  • Magma
    A344820:= func< n | (&+[Floor(n/k)*(-n)^(k-1): k in [1..n]]) >;
    [A344820(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    a[n_] := Sum[(-n)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 20] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*(-n)^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (-n)^(d-1)));
    
  • SageMath
    def A344820(n): return sum((n//k)*(-n)^(k-1) for k in range(1,n+1))
    [A344820(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} (-n)^(d-1).
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} x^k/(1 + n*x^k).
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} (-n)^(k-1) * x^k/(1 - x^k).
a(n) ~ -(-1)^n * n^(n-1). - Vaclav Kotesovec, Jun 05 2021

A344819 a(n) = Sum_{k=1..n} floor(n/k) * (-4)^(k-1).

Original entry on oeis.org

1, -2, 15, -52, 205, -806, 3291, -13160, 52393, -209498, 839079, -3356300, 13420917, -53683854, 214751875, -859006400, 3435960897, -13743843762, 54975632975, -219902535924, 879609095965, -3518436366566, 14073749677851, -56294998711576, 225179977999337, -900719912066074
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Crossrefs

Programs

  • Magma
    A344819:= func< n | (&+[(-4)^(k-1)*Floor(n/k): k in [1..n]]) >;
    [A344819(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    a[n_] := Sum[(-4)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*(-4)^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (-4)^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+4*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-4)^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344819(n): return sum((-4)^(k-1)*int(n//k) for k in range(1,n+1))
    [A344819(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} (-4)^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 + 4*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} (-4)^(k-1) * x^k/(1 - x^k).
a(n) ~ -(-1)^n * 4^n / 5. - Vaclav Kotesovec, Jun 05 2021

A344824 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{j=1..n} floor(n/j) * (-k)^(j-1).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 0, 3, 4, 1, -1, 5, 2, 5, 1, -2, 9, -4, 4, 6, 1, -3, 15, -20, 13, 4, 7, 1, -4, 23, -52, 62, -16, 6, 8, 1, -5, 33, -106, 205, -174, 49, 4, 9, 1, -6, 45, -188, 520, -806, 556, -88, 7, 10, 1, -7, 59, -304, 1109, -2584, 3291, -1660, 173, 7, 11
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Examples

			Square array, A(n, k), begins:
  1, 1,   1,    1,    1,     1,     1, ...
  2, 1,   0,   -1,   -2,    -3,    -4, ...
  3, 3,   5,    9,   15,    23,    33, ...
  4, 2,  -4,  -20,  -52,  -106,  -188, ...
  5, 4,  13,   62,  205,   520,  1109, ...
  6, 4, -16, -174, -806, -2584, -6636, ...
Antidiagonal triangle, T(n, k), begins:
  1;
  1,  2;
  1,  1,   3;
  1,  0,   3,    4;
  1, -1,   5,    2,   5;
  1, -2,   9,   -4,   4,    6;
  1, -3,  15,  -20,  13,    4,   7;
  1, -4,  23,  -52,  62,  -16,   6,   8;
  1, -5,  33, -106, 205, -174,  49,   4,  9;
  1, -6,  45, -188, 520, -806, 556, -88,  7,  10;
		

Crossrefs

Columns k=0..4 give A000027, A059851, A344817, A344818, A344819.
A(n,n) gives A344820.
Cf. A344821.

Programs

  • Magma
    A:= func< n,k | k eq n select n else (&+[Floor(n/j)*(-k)^(j-1): j in [1..n]]) >;
    A344824:= func< n,k | A(k+1, n-k-1) >;
    [A344824(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 27 2024
    
  • Mathematica
    A[n_, k_] := Sum[If[k == 0 && j == 1, 1, (-k)^(j - 1)] * Quotient[n, j], {j, 1, n}]; Table[A[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 29 2021 *)
  • PARI
    A(n, k) = sum(j=1, n, n\j*(-k)^(j-1));
    
  • PARI
    A(n, k) = sum(j=1, n, sumdiv(j, d, (-k)^(d-1)));
    
  • SageMath
    def A(n,k): return n if k==n else sum((n//j)*(-k)^(j-1) for j in range(1,n+1))
    def A344824(n,k): return A(k+1, n-k-1)
    flatten([[A344824(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 27 2024

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 + k*x^j).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (-k)^(j-1) * x^j/(1 - x^j).
A(n,k) = Sum_{j=1..n} Sum_{d|j} (-k)^(d - 1).
T(n, k) = Sum_{j=1..(k+1)} floor((k+1)/j) * (k-n+1)^(j-1), for n >= 1, 0 <= k <= n-1 (antidiagonal triangle). - G. C. Greubel, Jun 27 2024
Showing 1-10 of 10 results.