A059851
a(n) = n - floor(n/2) + floor(n/3) - floor(n/4) + ... (this is a finite sum).
Original entry on oeis.org
0, 1, 1, 3, 2, 4, 4, 6, 4, 7, 7, 9, 7, 9, 9, 13, 10, 12, 12, 14, 12, 16, 16, 18, 14, 17, 17, 21, 19, 21, 21, 23, 19, 23, 23, 27, 24, 26, 26, 30, 26, 28, 28, 30, 28, 34, 34, 36, 30, 33, 33, 37, 35, 37, 37, 41, 37, 41, 41, 43, 39, 41, 41, 47, 42, 46, 46, 48, 46, 50, 50, 52, 46, 48, 48
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Feb 27 2001
a(5) = 4 because floor(5) - floor(5/2) + floor(5/3) - floor(5/4) + floor(5/5) - floor(5/6) + ... = 5 - 2 + 1 - 1 + 1 - 0 + 0 - 0 + ... = 4.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4),
A344818 (q=-3),
A344817 (q=-2), this sequence (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5),
A332533 (q=n).
-
A059851:= func< n | (&+[Floor(n/j)*(-1)^(j-1): j in [1..n]]) >;
[A059851(n): n in [1..80]]; // G. C. Greubel, Jun 27 2024
-
for n from 0 to 200 do printf(`%d,`, sum((-1)^(i+1)*floor(n/i), i=1..n)) od:
-
f[list_, i_] := list[[i]]; nn = 200; a = Table[1, {n, 1, nn}]; b =
Table[If[OddQ[n], 1, -1], {n, 1, nn}];Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] // Accumulate (* Geoffrey Critzer, Mar 29 2015 *)
Table[Sum[Floor[n/k] - 2*Floor[n/(2*k)], {k, 1, n}], {n, 0, 100}] (* Vaclav Kotesovec, Dec 23 2020 *)
-
{ for (n=0, 10000, s=1; d=2; a=n; while ((f=floor(n/d)) > 0, a-=s*f; s=-s; d++); write("b059851.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 29 2009
-
from math import isqrt
def A059851(n): return ((t:=isqrt(m:=n>>1))**2<<1)-(s:=isqrt(n))**2+(sum(n//k for k in range(1,s+1))-(sum(m//k for k in range(1,t+1))<<1)<<1) # Chai Wah Wu, Oct 23 2023
-
def A059851(n): return sum((n//j)*(-1)^(j-1) for j in range(1,n+1))
[A059851(n) for n in range(81)] # G. C. Greubel, Jun 27 2024
More terms from
James Sellers and Larry Reeves (larryr(AT)acm.org), Feb 27 2001
A332533
a(n) = (1/n) * Sum_{k=1..n} floor(n/k) * n^k.
Original entry on oeis.org
1, 4, 15, 92, 790, 9384, 137326, 2397352, 48428487, 1111122360, 28531183329, 810554859732, 25239592620853, 854769763924104, 31278135039463245, 1229782938533709200, 51702516368332126932, 2314494592676172411516, 109912203092257573556274, 5518821052632117898282620
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4),
A344818 (q=-3),
A344817 (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5), this sequence (q=n).
-
A332533:= func< n | (&+[Floor(n/j)*n^(j-1): j in [1..n]]) >;
[A332533(n): n in [1..40]]; // G. C. Greubel, Jun 27 2024
-
seq(add(n^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
-
Table[(1/n) Sum[Floor[n/k] n^k, {k, 1, n}], {n, 1, 20}]
Table[(1/n) Sum[Sum[n^d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
Table[SeriesCoefficient[(1/(1 - x)) Sum[x^k/(1 - n x^k), {k, 1, n}], {x, 0, n}], {n, 1, 20}]
-
a(n) = sum(k=1, n, (n\k)*n^k)/n; \\ Michel Marcus, Feb 16 2020
-
a(n) = sum(k=1, n, sumdiv(k, d, n^(d-1))); \\ Seiichi Manyama, May 29 2021
-
def A332533(n): return sum((n//j)*n^(j-1) for j in range(1,n+1))
[A332533(n) for n in range(1,41)] # G. C. Greubel, Jun 27 2024
A344814
a(n) = Sum_{k=1..n} floor(n/k) * 3^(k-1).
Original entry on oeis.org
1, 5, 15, 46, 128, 384, 1114, 3332, 9903, 29671, 88721, 266151, 797593, 2392649, 7175709, 21526834, 64573556, 193720536, 581141026, 1743422288, 5230207428, 15690619684, 47071679294, 141215037738, 423644574301, 1270933715189, 3812799550089, 11438398630159
Offset: 1
-
A344814:= func< n | (&+[Floor(n/k)*3^(k-1): k in [1..n]]) >;
[A344814(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
seq(add(3^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Feb 05 2023
-
a[n_] := Sum[3^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*3^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, 3^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-3*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 3^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344814(n): return sum((n//k)*3^(k-1) for k in range(1,n+1))
[A344814(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344815
a(n) = Sum_{k=1..n} floor(n/k) * 4^(k-1).
Original entry on oeis.org
1, 6, 23, 92, 349, 1394, 5491, 21944, 87497, 349902, 1398479, 5593892, 22371109, 89484074, 357919803, 1431678080, 5726645377, 22906581142, 91626057879, 366504227292, 1466015859181, 5864063418866, 23456249463283, 93824997852744, 375299974563657, 1501199898183502
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4),
A344818 (q=-3),
A344817 (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3), this sequence (q=4),
A344816 (q=5),
A332533 (q=n).
-
A344815:= func< n | (&+[Floor(n/j)*4^(j-1): j in [1..n]]) >;
[A344815(n): n in [1..40]]; // G. C. Greubel, Jun 27 2024
-
seq(add(4^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Feb 16 2023
-
a[n_] := Sum[4^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*4^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, 4^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-4*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 4^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344815(n): return sum((n//j)*4^(j-1) for j in range(1,n+1))
[A344815(n) for n in range(1,41)] # G. C. Greubel, Jun 27 2024
A344816
a(n) = Sum_{k=1..n} floor(n/k) * 5^(k-1).
Original entry on oeis.org
1, 7, 33, 164, 790, 3946, 19572, 97828, 488479, 2442235, 12207861, 61039267, 305179893, 1525898649, 7629414925, 38147071306, 190734961932, 953674808838, 4768372074464, 23841860356470, 119209292012746, 596046459981502, 2980232250997128, 14901161254984784
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4),
A344818 (q=-3),
A344817 (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4), this sequence (q=5),
A332533 (q=n).
-
A344816:= func< n | (&+[Floor(n/k)*5^(k-1): k in [1..n]]) >;
[A344816(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
seq(add(5^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
-
a[n_] := Sum[5^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*5^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, 5^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-5*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 5^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344816(n): return sum((n//k)*5^(k-1) for k in range(1,n+1))
[A344816(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344817
a(n) = Sum_{k=1..n} floor(n/k) * (-2)^(k-1).
Original entry on oeis.org
1, 0, 5, -4, 13, -16, 49, -88, 173, -324, 701, -1384, 2713, -5416, 10989, -21916, 43621, -87224, 174921, -349872, 698773, -1397356, 2796949, -5593872, 11183361, -22366976, 44742149, -89483716, 178951741, -357903312, 715838513, -1431678040, 2863290285
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4),
A344818 (q=-3), this sequence (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5),
A332533 (q=n).
-
A344817:= func< n | (&+[Floor(n/k)*(-2)^(k-1): k in [1..n]]) >;
[A344817(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
a[n_] := Sum[(-2)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-2)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-2)^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+2*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-2)^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344817(n): return sum((n//k)*(-2)^(k-1) for k in range(1,n+1))
[A344817(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344820
a(n) = Sum_{k=1..n} floor(n/k) * (-n)^(k-1).
Original entry on oeis.org
1, 0, 9, -52, 520, -6636, 102984, -1864600, 38741463, -909081740, 23775986069, -685854111804, 21633935838489, -740800448012044, 27368368159530285, -1085102592823737200, 45957792326631241516, -2070863582899905915336, 98920982783031811482920, -4993219047619535240997780
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): this sequence (q=-n),
A344819 (q=-4),
A344818 (q=-3),
A344817 (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5),
A332533 (q=n).
-
A344820:= func< n | (&+[Floor(n/k)*(-n)^(k-1): k in [1..n]]) >;
[A344820(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
a[n_] := Sum[(-n)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 20] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-n)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-n)^(d-1)));
-
def A344820(n): return sum((n//k)*(-n)^(k-1) for k in range(1,n+1))
[A344820(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344818
a(n) = Sum_{k=1..n} floor(n/k) * (-3)^(k-1).
Original entry on oeis.org
1, -1, 9, -20, 62, -174, 556, -1660, 4911, -14693, 44357, -133053, 398389, -1195207, 3587853, -10763270, 32283452, -96850386, 290570104, -871710994, 2615074146, -7845220010, 23535839600, -70607518824, 211822017739, -635466060265, 1906399774635, -5719199303975
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4), this sequence (q=-3),
A344817 (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5),
A332533 (q=n).
-
A344818:= func< n | (&+[Floor(n/k)*(-3)^(k-1): k in [1..n]]) >;
[A344818(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
a[n_] := Sum[(-3)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-3)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-3)^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+3*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-3)^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344818(n): return sum((n//k)*(-3)^(k-1) for k in range(1,n+1))
[A344818(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344819
a(n) = Sum_{k=1..n} floor(n/k) * (-4)^(k-1).
Original entry on oeis.org
1, -2, 15, -52, 205, -806, 3291, -13160, 52393, -209498, 839079, -3356300, 13420917, -53683854, 214751875, -859006400, 3435960897, -13743843762, 54975632975, -219902535924, 879609095965, -3518436366566, 14073749677851, -56294998711576, 225179977999337, -900719912066074
Offset: 1
-
A344819:= func< n | (&+[(-4)^(k-1)*Floor(n/k): k in [1..n]]) >;
[A344819(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
-
a[n_] := Sum[(-4)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-4)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-4)^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+4*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-4)^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344819(n): return sum((-4)^(k-1)*int(n//k) for k in range(1,n+1))
[A344819(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024
A344821
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{j=1..n} floor(n/j) * k^(j-1).
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 9, 8, 5, 1, 6, 15, 20, 10, 6, 1, 7, 23, 46, 37, 14, 7, 1, 8, 33, 92, 128, 76, 16, 8, 1, 9, 45, 164, 349, 384, 141, 20, 9, 1, 10, 59, 268, 790, 1394, 1114, 280, 23, 10, 1, 11, 75, 410, 1565, 3946, 5491, 3332, 541, 27, 11
Offset: 1
Square array, A(n, k), begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
3, 5, 9, 15, 23, 33, 45, ...
4, 8, 20, 46, 92, 164, 268, ...
5, 10, 37, 128, 349, 790, 1565, ...
6, 14, 76, 384, 1394, 3946, 9384, ...
Antidiagonal triangle, T(n, k), begins:
1;
1, 2;
1, 3, 3;
1, 4, 5, 4;
1, 5, 9, 8, 5;
1, 6, 15, 20, 10, 6;
1, 7, 23, 46, 37, 14, 7;
1, 8, 33, 92, 128, 76, 16, 8;
1, 9, 45, 164, 349, 384, 141, 20, 9;
-
A:= func< n,k | k eq n select n else (&+[Floor(n/j)*k^(j-1): j in [1..n]]) >;
A344821:= func< n,k | A(k+1, n-k-1) >;
[A344821(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 27 2024
-
A[n_, k_] := Sum[If[k == 0 && j == 1, 1, k^(j - 1)] * Quotient[n, j], {j, 1, n}]; Table[A[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 29 2021 *)
-
A(n, k) = sum(j=1, n, n\j*k^(j-1));
-
A(n, k) = sum(j=1, n, sumdiv(j, d, k^(d-1)));
-
def A(n,k): return n if k==n else sum((n//j)*k^(j-1) for j in range(1,n+1))
def A344821(n,k): return A(k+1, n-k-1)
flatten([[A344821(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 27 2024
Showing 1-10 of 11 results.
Comments