A344817
a(n) = Sum_{k=1..n} floor(n/k) * (-2)^(k-1).
Original entry on oeis.org
1, 0, 5, -4, 13, -16, 49, -88, 173, -324, 701, -1384, 2713, -5416, 10989, -21916, 43621, -87224, 174921, -349872, 698773, -1397356, 2796949, -5593872, 11183361, -22366976, 44742149, -89483716, 178951741, -357903312, 715838513, -1431678040, 2863290285
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4),
A344818 (q=-3), this sequence (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5),
A332533 (q=n).
-
A344817:= func< n | (&+[Floor(n/k)*(-2)^(k-1): k in [1..n]]) >;
[A344817(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
a[n_] := Sum[(-2)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-2)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-2)^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+2*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-2)^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344817(n): return sum((n//k)*(-2)^(k-1) for k in range(1,n+1))
[A344817(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344820
a(n) = Sum_{k=1..n} floor(n/k) * (-n)^(k-1).
Original entry on oeis.org
1, 0, 9, -52, 520, -6636, 102984, -1864600, 38741463, -909081740, 23775986069, -685854111804, 21633935838489, -740800448012044, 27368368159530285, -1085102592823737200, 45957792326631241516, -2070863582899905915336, 98920982783031811482920, -4993219047619535240997780
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): this sequence (q=-n),
A344819 (q=-4),
A344818 (q=-3),
A344817 (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5),
A332533 (q=n).
-
A344820:= func< n | (&+[Floor(n/k)*(-n)^(k-1): k in [1..n]]) >;
[A344820(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
a[n_] := Sum[(-n)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 20] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-n)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-n)^(d-1)));
-
def A344820(n): return sum((n//k)*(-n)^(k-1) for k in range(1,n+1))
[A344820(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344818
a(n) = Sum_{k=1..n} floor(n/k) * (-3)^(k-1).
Original entry on oeis.org
1, -1, 9, -20, 62, -174, 556, -1660, 4911, -14693, 44357, -133053, 398389, -1195207, 3587853, -10763270, 32283452, -96850386, 290570104, -871710994, 2615074146, -7845220010, 23535839600, -70607518824, 211822017739, -635466060265, 1906399774635, -5719199303975
Offset: 1
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k):
A344820 (q=-n),
A344819 (q=-4), this sequence (q=-3),
A344817 (q=-2),
A059851 (q=-1),
A006218 (q=1),
A268235 (q=2),
A344814 (q=3),
A344815 (q=4),
A344816 (q=5),
A332533 (q=n).
-
A344818:= func< n | (&+[Floor(n/k)*(-3)^(k-1): k in [1..n]]) >;
[A344818(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
a[n_] := Sum[(-3)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-3)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-3)^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+3*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-3)^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344818(n): return sum((n//k)*(-3)^(k-1) for k in range(1,n+1))
[A344818(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A344819
a(n) = Sum_{k=1..n} floor(n/k) * (-4)^(k-1).
Original entry on oeis.org
1, -2, 15, -52, 205, -806, 3291, -13160, 52393, -209498, 839079, -3356300, 13420917, -53683854, 214751875, -859006400, 3435960897, -13743843762, 54975632975, -219902535924, 879609095965, -3518436366566, 14073749677851, -56294998711576, 225179977999337, -900719912066074
Offset: 1
-
A344819:= func< n | (&+[(-4)^(k-1)*Floor(n/k): k in [1..n]]) >;
[A344819(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
-
a[n_] := Sum[(-4)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
-
a(n) = sum(k=1, n, n\k*(-4)^(k-1));
-
a(n) = sum(k=1, n, sumdiv(k, d, (-4)^(d-1)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+4*x^k))/(1-x))
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-4)^(k-1)*x^k/(1-x^k))/(1-x))
-
def A344819(n): return sum((-4)^(k-1)*int(n//k) for k in range(1,n+1))
[A344819(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024
A344821
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{j=1..n} floor(n/j) * k^(j-1).
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 9, 8, 5, 1, 6, 15, 20, 10, 6, 1, 7, 23, 46, 37, 14, 7, 1, 8, 33, 92, 128, 76, 16, 8, 1, 9, 45, 164, 349, 384, 141, 20, 9, 1, 10, 59, 268, 790, 1394, 1114, 280, 23, 10, 1, 11, 75, 410, 1565, 3946, 5491, 3332, 541, 27, 11
Offset: 1
Square array, A(n, k), begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
3, 5, 9, 15, 23, 33, 45, ...
4, 8, 20, 46, 92, 164, 268, ...
5, 10, 37, 128, 349, 790, 1565, ...
6, 14, 76, 384, 1394, 3946, 9384, ...
Antidiagonal triangle, T(n, k), begins:
1;
1, 2;
1, 3, 3;
1, 4, 5, 4;
1, 5, 9, 8, 5;
1, 6, 15, 20, 10, 6;
1, 7, 23, 46, 37, 14, 7;
1, 8, 33, 92, 128, 76, 16, 8;
1, 9, 45, 164, 349, 384, 141, 20, 9;
-
A:= func< n,k | k eq n select n else (&+[Floor(n/j)*k^(j-1): j in [1..n]]) >;
A344821:= func< n,k | A(k+1, n-k-1) >;
[A344821(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 27 2024
-
A[n_, k_] := Sum[If[k == 0 && j == 1, 1, k^(j - 1)] * Quotient[n, j], {j, 1, n}]; Table[A[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 29 2021 *)
-
A(n, k) = sum(j=1, n, n\j*k^(j-1));
-
A(n, k) = sum(j=1, n, sumdiv(j, d, k^(d-1)));
-
def A(n,k): return n if k==n else sum((n//j)*k^(j-1) for j in range(1,n+1))
def A344821(n,k): return A(k+1, n-k-1)
flatten([[A344821(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 27 2024
A345033
Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-k)^(floor(n/j) - 1).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 3, 2, 1, -2, 6, 0, 3, 1, -3, 11, -8, 3, 3, 1, -4, 18, -28, 17, 2, 4, 1, -5, 27, -66, 81, -27, 5, 4, 1, -6, 38, -128, 255, -234, 70, 0, 5, 1, -7, 51, -220, 623, -1009, 739, -136, 5, 5, 1, -8, 66, -348, 1293, -3102, 4112, -2216, 255, 4, 6, 1, -9, 83, -518, 2397, -7743, 15649, -16452, 6545, -491, 7, 6
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
2, 3, 6, 11, 18, 27, 38, ...
2, 0, -8, -28, -66, -128, -220, ...
3, 3, 17, 81, 255, 623, 1293, ...
3, 2, -27, -234, -1009, -3102, -7743, ...
-
T[n_, 0] := Floor[(n + 1)/2]; T[n_, k_] := Sum[(-k)^(Floor[n/j] - 1), {j, 1, n}]; Table[T[k, n - k], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jun 06 2021 *)
-
T(n, k) = sum(j=1, n, (-k)^(n\j-1));
Showing 1-6 of 6 results.