cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A344819 a(n) = Sum_{k=1..n} floor(n/k) * (-4)^(k-1).

Original entry on oeis.org

1, -2, 15, -52, 205, -806, 3291, -13160, 52393, -209498, 839079, -3356300, 13420917, -53683854, 214751875, -859006400, 3435960897, -13743843762, 54975632975, -219902535924, 879609095965, -3518436366566, 14073749677851, -56294998711576, 225179977999337, -900719912066074
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Crossrefs

Programs

  • Magma
    A344819:= func< n | (&+[(-4)^(k-1)*Floor(n/k): k in [1..n]]) >;
    [A344819(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    a[n_] := Sum[(-4)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*(-4)^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (-4)^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+4*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-4)^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344819(n): return sum((-4)^(k-1)*int(n//k) for k in range(1,n+1))
    [A344819(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} (-4)^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 + 4*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} (-4)^(k-1) * x^k/(1 - x^k).
a(n) ~ -(-1)^n * 4^n / 5. - Vaclav Kotesovec, Jun 05 2021

A101561 a(n) = (-1)^n * [x^n] Sum_{k>=1} x^(k-1)/(1+3*x^k).

Original entry on oeis.org

1, 2, 10, 29, 82, 236, 730, 2216, 6571, 19604, 59050, 177410, 531442, 1593596, 4783060, 14351123, 43046722, 129133838, 387420490, 1162281098, 3486785140, 10460294156, 31381059610, 94143358424, 282429536563, 847288078004, 2541865834900, 7625599078610
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101561:= func< n | (&+[(-1)^(n-k)*3^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101561(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    a[n_]:= Sum[(-1)^(n-k) * If[Mod[n+1, k+1]==0, 1, 0] * 3^k, {k, 0, n}];
    Table[a[n], {n, 0, 25}] (* James C. McMahon, Jan 01 2024 *)
    A101561[n_]:= (-1)^n*DivisorSum[n+1, (-3)^(#-1) &];
    Table[A101561[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101561(n): return sum((-1)^(n+k)*3^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101561(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-3)^(d-1). - G. C. Greubel, Jun 25 2024

A101563 a(n) = (-1)^n * coefficient of x^n in Sum_{k>=1} x^(k-1)/(1+10*x^k).

Original entry on oeis.org

1, 9, 101, 1009, 10001, 99909, 1000001, 10001009, 100000101, 999990009, 10000000001, 100000100909, 1000000000001, 9999999000009, 100000000010101, 1000000010001009, 10000000000000001, 99999999900099909
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101563:= func< n | (&+[(-1)^(n-k)*(10)^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101563(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    A101563[n_]:= (-1)^n*DivisorSum[n+1, (-10)^(#-1) &];
    Table[A101563[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101563(n): return sum((-1)^(n+k)*(10)^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101563(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (10)^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-10)^(d-1). - G. C. Greubel, Jun 25 2024

A383003 a(n) = Sum_{d|n} (-n)^(d-1).

Original entry on oeis.org

1, -1, 10, -67, 626, -7745, 117650, -2097671, 43046803, -999990009, 25937424602, -743008621115, 23298085122482, -793714765724621, 29192926025441476, -1152921504875286543, 48661191875666868482, -2185911559727678460653, 104127350297911241532842
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-n)^(d-1));

Formula

a(n) = (1/n) * A383010(n).
a(n) = [x^n] Sum_{k>=1} log(1 + n*x^k) / k.
a(n) = [x^n] Sum_{k>=1} x^k / (1 + n*x^k).
Showing 1-4 of 4 results.