cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101596 G.f.: c(2*x)^4, where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 8, 56, 384, 2640, 18304, 128128, 905216, 6449664, 46305280, 334721024, 2434334720, 17801072640, 130809692160, 965500108800, 7154863964160, 53214300733440, 397094950010880, 2972195534929920, 22308469918924800
Offset: 0

Views

Author

Paul Barry, Dec 08 2004

Keywords

Comments

a(n) is also the number of paths in a binary tree of length 2n+3 between two vertices that are 3 steps apart. - David Koslicki, (koslicki(AT)math.psu.edu), Nov 02 2010

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8z]+4z(-2+Sqrt[1-8z]+2z))/(32z^4), {z, 0, 20}],z] (* Benedict W. J. Irwin, Jul 12 2016 *)
  • PARI
    x='x+O('x^50); Vec((1-sqrt(1-8*x) + 4*x*(2*x-2+ sqrt(1-8*x)) )/(32*x^4)) \\ G. C. Greubel, May 24 2017

Formula

a(n) = ((8*n+12)/(3*n+12))*((3*n+3)/(n+3))*2^n*C(n+1), where C(n) and the Catalan numbers of A000108.
Conjecture: (n+4)*a(n)-4*(3n+7)*a(n-1)+16*(2n+1)*a(n-2)=0. - R. J. Mathar, Dec 13 2011
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: (1-sqrt(1-8*x)+4*x*(2*x-2+sqrt(1-8*x)))/(32*x^4).
E.g.f: E^(4*x)*(2*x*(4*x-3)*BesselI(0,4*x) + (3-4*x+ 8*x^2)* BesselI(1, 4*x))/(4*x^3). (End)
a(n) ~ 2^(3*n+5)*n^(-3/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016