A101606 a(n) = number of divisors of n that have exactly three (not necessarily distinct) prime factors.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 3, 0, 0, 0, 2, 0, 3, 0, 1, 0, 0, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 1
Offset: 1
Examples
a(60) = 3 because of all the divisors of 60 only these three are terms of A014612: 12 = 2 * 2 * 3; 20 = 2 * 2 * 5; 30 = 2 * 3 * 5.
References
- Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- E. A. Bender and J. R. Goldman, On the Applications of Moebius Inversion in Combinatorial Analysis, Amer. Math. Monthly 82, 789-803, 1975.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Moebius Transform.
- Index entries for sequences computed from exponents in factorization of n
Programs
-
Maple
isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: A101606 := proc(n) a :=0 ; for d in numtheory[divisors](n) do if isA014612(d) then a := a+1 ; fi; od: a ; end: for n from 1 to 120 do printf("%d,",A101606(n)) ; od: # R. J. Mathar, Jan 27 2009
-
Mathematica
a[n_] := DivisorSum[n, Boole[PrimeOmega[#] == 3]&]; Array[a, 105] (* Jean-François Alcover, Nov 14 2017 *)
-
PARI
A101606(n) = sumdiv(n,d,(3==bigomega(d))); \\ Antti Karttunen, Jul 23 2017
Formula
If n = (p1^e1 * p2^e2 * ... * pj^ej) for primes p1, p2, ..., pj and integer exponents e1, e2, ..., ej, then a(n) = a(n) = |{k: ek>=3}| + ((j-1)/2)*|{k: ek>=2}| + C(j, 3). where C(j, 3) is the binomial coefficient A000292(j).
a(n) = Sum_{d|n} A101605(d). - Antti Karttunen, Jul 23 2017
Extensions
a(48) replaced with 2 and a(76) replaced with 1 by R. J. Mathar, Jan 27 2009
Name changed by Antti Karttunen, Jul 23 2017
Comments