A101624 Stern-Jacobsthal numbers.
1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, 17, 103, 69, 139, 1, 279, 277, 827, 273, 1895, 1349, 2955, 257, 5655, 5141, 14395, 4113, 24679, 16453, 32907, 1, 65815, 65813, 197435, 65809, 460647, 329029, 723851, 65793, 1512983, 1381397, 3881019, 1118225
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- K. Dilcher and L. Ericksen, Reducibility and irreducibility of Stern (0, 1)-polynomials, Communications in Mathematics, Volume 22/2014 , pp. 77-102.
Programs
-
Haskell
a101624 = sum . zipWith (*) a000079_list . map (flip mod 2) . a011973_row -- Reinhard Zumkeller, Jul 14 2015
-
Python
prpr = 1 prev = 1 print("1, 1", end=", ") for i in range(99): current = (prev)^(prpr*2) print(current, end=", ") prpr = prev prev = current # Alex Ratushnyak, Apr 14 2012
-
Python
def A101624(n): return sum(int(not k & ~(n-k))*2**k for k in range(n//2+1)) # Chai Wah Wu, Jun 20 2022
Formula
a(n) = Sum_{k=0..floor(n/2)} (binomial(n-k, k) mod 2)*2^k.
a(n) = Sum_{k=0..n} (binomial(k, n-k) mod 2)*2^(n-k). - Paul Barry, May 10 2005
a(n) = Sum_{k=0..n} A106344(n,k)*2^(n-k). - Philippe Deléham, Dec 18 2008
a(0)=1, a(1)=1, a(n) = a(n-1) XOR (a(n-2)*2), where XOR is the bitwise exclusive-OR operator. - Alex Ratushnyak, Apr 14 2012
Comments