A101646 Array read by antidiagonals: T(n,k) = variant of Knuth's Fibonacci (or circle) product of n and k (A101330). Sometimes called the "arroba" product.
1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 5, 6, 8, 11, 11, 8, 6, 7, 10, 13, 15, 13, 10, 7, 8, 11, 16, 18, 18, 16, 11, 8, 9, 13, 18, 22, 21, 22, 18, 13, 9, 10, 15, 21, 25, 26, 26, 25, 21, 15, 10, 11, 16, 24, 29, 29, 32, 29, 29, 24, 16, 11, 12, 18, 26, 33, 34, 36, 36, 34, 33, 26, 18, 12
Offset: 1
Examples
Array begins: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 2 3 5 7 8 10 11 13 15 16 18 20 21 23 24 26 28 29 31 ... 3 5 8 11 13 16 18 21 24 26 29 32 34 37 39 42 45 47 50 ... 4 7 11 15 18 22 25 29 33 36 40 44 47 51 54 58 62 65 69 ... 5 8 13 18 21 26 29 34 39 42 47 52 55 60 63 68 73 76 81 ... ...
Links
- P. Grabner et al., Associativity of recurrence multiplication, Appl. Math. Lett. 7 (1994), 85-90.
- D. E. Knuth, Fibonacci multiplication, Appl. Math. Lett. 1 (1988), 57-60.
- W. F. Lunnon, Proof of formula
Crossrefs
Programs
-
Mathematica
T[n_, k_] := With[{phi2 = GoldenRatio^2}, n k - Floor[(k + 1)/phi2] Floor[ (n + 1)/phi2]]; Table[T[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2020 *)
-
PARI
T(n, k) = my(phi2 = ((1+sqrt(5))/2)^2); n*k - floor((k+1)/phi2)*floor((n+1)/phi2); \\ Michel Marcus, Mar 29 2016
Formula
T(n, k) = n*k - [(k+1)/phi^2] [(n+1)/phi^2]. For proof see link. - Fred Lunnon, May 24 2008
Comments