A100416
Numbers n such that sum of the proper divisors of n is equal to d_1!+d_2!+...+d_k!, where d_1 d_2 ... d_k is the decimal expansion of n.
Original entry on oeis.org
561653, 606061, 1649345, 2631227, 5657101, 25376713, 33805243, 38747603, 68760599, 77773043, 80404183, 101695597, 124781123, 125348239, 142692929, 152212087, 177464929, 184416409, 192144907, 200781041, 238715647, 241253839
Offset: 1
38747603 is in the sequence because {1,769,50387} is the set of proper
divisors of 38747603 and 3!+8!+7!+4!+7!+6!+0!+3!=1+769+50387.
-
Do[h = IntegerDigits[n]; l = Length[h]; If[DivisorSigma[1, n] - n == Sum[h[[k]]!, {k, l}], Print[n]], {n, 60000000}]
Select[Range[2413*10^5],Total[Most[Divisors[#]]]==Total[ IntegerDigits[ #]!]&] (* Harvey P. Dale, Oct 11 2018 *)
A101699
Numbers m such that phi(m) = d_1*d_1!+d_2*d_2!+...+d_k*d_k! where d_1 d_2 ... d_k is the decimal expansion of m.
Original entry on oeis.org
1, 23, 66666, 13179592
Offset: 1
13179592 is in the sequence because phi(13179592) = 1*1!+3*3!+1*1!+7*7!+9*9!+5*5!+9*9!+2*2!.
-
Do[If[EulerPhi[n] == Apply[Plus, IntegerDigits[n]*IntegerDigits[n]! ], Print[n]], {n, 30000000}]
Select[Range[132*10^5],EulerPhi[#]==Total[# #!&/@IntegerDigits[#]]&] (* Harvey P. Dale, Mar 06 2023 *)
A101702
Numbers m such that the sum of the factorials of their digits is equal to the reversal of m.
Original entry on oeis.org
1, 2, 541, 52100, 58504, 66410, 430000, 863180, 8601400, 17927300, 27927300, 31000000, 665100000, 3715000000, 6739630000, 11000000000, 21000000000, 53100000000, 70858000000, 79637300000, 451000000000, 1715000000000, 2715000000000, 48304000000000, 340000000000000, 5520000000000000
Offset: 1
665100000 is in the sequence because reversal(665100000) = 1566 = 6! + 6! + 5! + 1! + 0! + 0! + 0! + 0! + 0!.
-
Do[h = IntegerDigits[n]; l = Length[h]; If[FromDigits[Reverse[IntegerDigits[n]]] == Sum[h[[k]]!, {k, l}], Print[n]], {n, 10^9}]
Showing 1-3 of 3 results.
Comments