A101798 Primes of the form 32*k-1 such that 4*k-1, 8*k-1 and 16*k-1 are also primes.
1439, 2879, 21599, 28319, 96959, 137279, 219839, 429119, 462719, 507359, 571199, 597599, 659999, 700319, 811199, 858239, 861599, 903359, 976799, 982559, 1014719, 1017119, 1067999, 1115519, 1333919, 1342079, 1837919, 2029439, 2034239
Offset: 1
Examples
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 1439 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
32 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *) Select[Prime[Range[200000]],Mod[#,32]==31&&AllTrue[{4,8,16} (#+1)/32-1,PrimeQ]&] (* Harvey P. Dale, Feb 20 2025 *)
-
PARI
is(k) = if(k % 32 == 31, my(m = k\32 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024
Formula
a(n) = 32*A101794(n) - 1 = 8*A101795(n) + 7 = 4*A101796(n) + 3 = 2*A101797(n) + 1. - Amiram Eldar, May 13 2024