A101794
Numbers k such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are all primes.
Original entry on oeis.org
45, 90, 675, 885, 3030, 4290, 6870, 13410, 14460, 15855, 17850, 18675, 20625, 21885, 25350, 26820, 26925, 28230, 30525, 30705, 31710, 31785, 33375, 34860, 41685, 41940, 57435, 63420, 63570, 71805, 74025, 78585, 83865, 85230, 93075
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 45 is a term.
-
Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
-
is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1); \\ Amiram Eldar, May 13 2024
A101795
Primes of the form 4*k-1 such that 8*k-1, 16*k-1 and 32*k-1 are also primes.
Original entry on oeis.org
179, 359, 2699, 3539, 12119, 17159, 27479, 53639, 57839, 63419, 71399, 74699, 82499, 87539, 101399, 107279, 107699, 112919, 122099, 122819, 126839, 127139, 133499, 139439, 166739, 167759, 229739, 253679, 254279, 287219, 296099
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 179 is a term.
-
Select[Table[4n-1,{n,75000}],AllTrue[(#+1)*{1,2,4,8}-1,PrimeQ]&] (* Harvey P. Dale, Apr 23 2019 *)
-
is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024
A101796
Primes of the form 8*k-1 such that 4*k-1, 16*k-1 and 32*k-1 are also primes.
Original entry on oeis.org
359, 719, 5399, 7079, 24239, 34319, 54959, 107279, 115679, 126839, 142799, 149399, 164999, 175079, 202799, 214559, 215399, 225839, 244199, 245639, 253679, 254279, 266999, 278879, 333479, 335519, 459479, 507359, 508559
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 359 is a term.
-
8 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
-
is(k) = if(k % 8 == 7, my(m = k\8 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024
A101797
Primes of the form 16*k-1 such that 4*k-1, 8*k-1 and 32*k-1 are also primes.
Original entry on oeis.org
719, 1439, 10799, 14159, 48479, 68639, 109919, 214559, 231359, 253679, 285599, 298799, 329999, 350159, 405599, 429119, 430799, 451679, 488399, 491279, 507359, 508559, 533999, 557759, 666959, 671039, 918959, 1014719, 1017119, 1148879
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 719 is a term.
-
16#-1&/@Select[Range[80000],AllTrue[#*2^Range[2,5]-1,PrimeQ]&] (* Harvey P. Dale, Apr 25 2015 *)
-
is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024
A101998
Primes of the form 32*k-1 such that 4*k-1, 8*k-1, 16*k-1 and 64*k-1 are also primes.
Original entry on oeis.org
1439, 429119, 507359, 1014719, 1017119, 2034239, 2368799, 2727359, 4858559, 6484319, 8553599, 8981279, 12789599, 12972959, 14567999, 14929919, 15301439, 15367679, 16362719, 17107199, 17263199, 17962559, 18224639, 18857759
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 1439 is a term.
-
32 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
-
is(k) = if(k % 32 == 31, my(m = k\32 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024
Showing 1-5 of 5 results.