cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A101994 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are all primes.

Original entry on oeis.org

45, 13410, 15855, 31710, 31785, 63570, 74025, 85230, 151830, 202635, 267300, 280665, 399675, 405405, 455250, 466560, 478170, 480240, 511335, 534600, 539475, 561330, 569520, 589305, 666945, 716460, 743160, 748215, 766785, 799350, 860835
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 45 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1) && isprime(64*k-1); \\ Amiram Eldar, May 13 2024

A101790 Numbers k such that 4*k-1, 8*k-1 and 16*k-1 are all primes.

Original entry on oeis.org

3, 45, 90, 180, 255, 258, 363, 378, 453, 483, 615, 675, 705, 873, 885, 978, 1350, 1533, 1770, 1788, 2673, 2793, 2868, 3030, 3225, 3240, 4203, 4290, 4548, 4830, 4998, 5103, 5253, 5295, 5568, 5775, 5955, 6060, 6138, 6870, 7383, 7713, 8133, 8370, 8580, 9000
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3 - 1 = 11, 8*3 - 1 = 23 and 16*3 - 1 = 47 are primes, so 3 is a term.
		

Crossrefs

Subsequence of A005099 and A005122.
Subsequences: A101794, A101994.

Programs

  • Magma
    [n: n in [0..10000] | IsPrime(4*n-1) and IsPrime(8*n-1) and IsPrime(16*n-1)]; // Vincenzo Librandi, Nov 17 2010
    
  • Mathematica
    Select[Range[10^4], And @@ PrimeQ[2^Range[2, 4]*# - 1] &] (* Amiram Eldar, May 12 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1); \\ Amiram Eldar, May 12 2024

A101995 Primes of the form 4*k-1 such that 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

179, 53639, 63419, 126839, 127139, 254279, 296099, 340919, 607319, 810539, 1069199, 1122659, 1598699, 1621619, 1820999, 1866239, 1912679, 1920959, 2045339, 2138399, 2157899, 2245319, 2278079, 2357219, 2667779, 2865839
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 179 is a term.
		

Crossrefs

Programs

  • Mathematica
    4 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 4*A101994(n) - 1. - Amiram Eldar, May 13 2024

A101795 Primes of the form 4*k-1 such that 8*k-1, 16*k-1 and 32*k-1 are also primes.

Original entry on oeis.org

179, 359, 2699, 3539, 12119, 17159, 27479, 53639, 57839, 63419, 71399, 74699, 82499, 87539, 101399, 107279, 107699, 112919, 122099, 122819, 126839, 127139, 133499, 139439, 166739, 167759, 229739, 253679, 254279, 287219, 296099
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 179 is a term.
		

Crossrefs

Subsequence of A002145 and A101791.
Subsequence: A101995.

Programs

  • Mathematica
    Select[Table[4n-1,{n,75000}],AllTrue[(#+1)*{1,2,4,8}-1,PrimeQ]&] (* Harvey P. Dale, Apr 23 2019 *)
  • PARI
    is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 4*A101794(n) - 1. - Amiram Eldar, May 13 2024

A101796 Primes of the form 8*k-1 such that 4*k-1, 16*k-1 and 32*k-1 are also primes.

Original entry on oeis.org

359, 719, 5399, 7079, 24239, 34319, 54959, 107279, 115679, 126839, 142799, 149399, 164999, 175079, 202799, 214559, 215399, 225839, 244199, 245639, 253679, 254279, 266999, 278879, 333479, 335519, 459479, 507359, 508559
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 359 is a term.
		

Crossrefs

Subsequence of A007522 and A101792.
Subsequence: A101996.

Programs

  • Mathematica
    8 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = if(k % 8 == 7, my(m = k\8 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 8*A101794(n) - 1 = 2*A101795(n) + 1. - Amiram Eldar, May 13 2024

A101797 Primes of the form 16*k-1 such that 4*k-1, 8*k-1 and 32*k-1 are also primes.

Original entry on oeis.org

719, 1439, 10799, 14159, 48479, 68639, 109919, 214559, 231359, 253679, 285599, 298799, 329999, 350159, 405599, 429119, 430799, 451679, 488399, 491279, 507359, 508559, 533999, 557759, 666959, 671039, 918959, 1014719, 1017119, 1148879
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 719 is a term.
		

Crossrefs

Subsequence of A127576 and A101793.
Subsequence: A101997.

Programs

  • Mathematica
    16#-1&/@Select[Range[80000],AllTrue[#*2^Range[2,5]-1,PrimeQ]&] (* Harvey P. Dale, Apr 25 2015 *)
  • PARI
    is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 16*A101794(n) - 1 = 4*A101795(n) + 3 = 2*A101796(n) + 1. - Amiram Eldar, May 13 2024

A101798 Primes of the form 32*k-1 such that 4*k-1, 8*k-1 and 16*k-1 are also primes.

Original entry on oeis.org

1439, 2879, 21599, 28319, 96959, 137279, 219839, 429119, 462719, 507359, 571199, 597599, 659999, 700319, 811199, 858239, 861599, 903359, 976799, 982559, 1014719, 1017119, 1067999, 1115519, 1333919, 1342079, 1837919, 2029439, 2034239
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 1439 is a term.
		

Crossrefs

Subsequence of A127578.
Subsequence: A101998.

Programs

  • Mathematica
    32 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
    Select[Prime[Range[200000]],Mod[#,32]==31&&AllTrue[{4,8,16} (#+1)/32-1,PrimeQ]&] (* Harvey P. Dale, Feb 20 2025 *)
  • PARI
    is(k) = if(k % 32 == 31, my(m = k\32 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 32*A101794(n) - 1 = 8*A101795(n) + 7 = 4*A101796(n) + 3 = 2*A101797(n) + 1. - Amiram Eldar, May 13 2024

A101320 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1, 64*k-1 and 128*k-1 are all primes.

Original entry on oeis.org

15855, 31785, 267300, 280665, 399675, 561330, 946050, 990510, 1022220, 1082115, 1164735, 1283250, 1303875, 1309545, 1514880, 1669065, 1924410, 2850225, 3078675, 3092760, 3492270, 3536385, 3611205, 3920670, 4148970, 4454775
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*15855-1, 8*15855-1, 16*15855-1, 32*15855-1, 64*15855-1 and 128*15855-1 are primes, so 15855 is a term.
		

Crossrefs

Cf. A002515.
Subsequence of A005099, A005122, A101790, A101794 and A101994.

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 7]*# - 1] &] (* Amiram Eldar, May 23 2024 *)
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(4*n-1) && ispseudoprime(8*n-1) && ispseudoprime(16*n-1) && ispseudoprime(32*n-1) && ispseudoprime(64*n-1) && ispseudoprime(128*n-1), print1(n, ", "))) \\ Iain Fox, Nov 23 2017

A101236 Smallest i such that i*2^(2)-1, ..., i*2^(n+2)-1 are primes.

Original entry on oeis.org

1, 1, 3, 45, 45, 15855, 280665, 4774980, 4393585185, 6522452145, 166260770280, 4321816939440, 15939674132892510, 22654052989616460555, 22654052989616460555, 202608454566431632290
Offset: 0

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004; revised Dec 31 2004

Keywords

Comments

(2^2)*3-1=11, (2^3)*3-1=23 and (2^4)*3-1=47 are primes so 3 is the third entry.
For every x in A001122, the x-th term of this sequence and every succeeding term is divisible by x. For example 3 divides the 3rd and every succeeding term, 5 divides the 5th and every succeeding term.
The sequences of primes generated by these numbers are a type of Cunningham chain of the first kind (CC1). Since the longest known CC1 chain is of length 16, the next terms are currently unknown. - Douglas Stones (dssto1(AT)student.monash.edu.au), Mar 16 2005

Crossrefs

Extensions

More terms from Douglas Stones (dssto1(AT)student.monash.edu.au), Mar 16 2005
Showing 1-9 of 9 results.