cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A101794 Numbers k such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are all primes.

Original entry on oeis.org

45, 90, 675, 885, 3030, 4290, 6870, 13410, 14460, 15855, 17850, 18675, 20625, 21885, 25350, 26820, 26925, 28230, 30525, 30705, 31710, 31785, 33375, 34860, 41685, 41940, 57435, 63420, 63570, 71805, 74025, 78585, 83865, 85230, 93075
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 45 is a term.
		

Crossrefs

Subsequence of A005099, A005122 and A101790.
Subsequence: A101994.

Programs

  • Mathematica
    Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1); \\ Amiram Eldar, May 13 2024

A101994 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are all primes.

Original entry on oeis.org

45, 13410, 15855, 31710, 31785, 63570, 74025, 85230, 151830, 202635, 267300, 280665, 399675, 405405, 455250, 466560, 478170, 480240, 511335, 534600, 539475, 561330, 569520, 589305, 666945, 716460, 743160, 748215, 766785, 799350, 860835
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 45 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1) && isprime(64*k-1); \\ Amiram Eldar, May 13 2024

A101793 Primes of the form 16*k-1 such that 4*k-1 and 8*k-1 are also primes.

Original entry on oeis.org

47, 719, 1439, 2879, 4079, 4127, 5807, 6047, 7247, 7727, 9839, 10799, 11279, 13967, 14159, 15647, 21599, 24527, 28319, 28607, 42767, 44687, 45887, 48479, 51599, 51839, 67247, 68639, 72767, 77279, 79967, 81647, 84047, 84719, 89087, 92399, 95279, 96959, 98207
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3-1 = 11, 8*3-1 = 23 and 16*3-1 = 47 are primes, so 47 is a term.
		

Crossrefs

Subsequence of A127576.
Subsequences: A101797, A101997.

Programs

  • Mathematica
    16#-1&/@Select[Range[10000],AllTrue[{4#-1,8#-1,16#-1},PrimeQ]&] (* Harvey P. Dale, Jun 13 2015 *)
  • PARI
    is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 16*A101790(n) - 1 = 4*A101791(n) + 3 = 2*A101792(n) + 1. - Amiram Eldar, May 13 2024

A101791 Primes of the form 4*k-1 such that 8*k-1 and 16*k-1 are also primes.

Original entry on oeis.org

11, 179, 359, 719, 1019, 1031, 1451, 1511, 1811, 1931, 2459, 2699, 2819, 3491, 3539, 3911, 5399, 6131, 7079, 7151, 10691, 11171, 11471, 12119, 12899, 12959, 16811, 17159, 18191, 19319, 19991, 20411, 21011, 21179, 22271, 23099, 23819
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3-1 = 11, 8*3-1 = 23 and 16*3-1 = 47 are primes, so 11 is a term.
		

Crossrefs

Subsequence of A002145.
Subsequences: A101795, A101995.

Programs

  • Mathematica
    p4816Q[n_]:=Module[{nn=(n+1)/4},And@@PrimeQ[{n,8nn-1,16nn-1}]]; Select[ 4*Range[6000]-1,p4816Q] (* Harvey P. Dale, Nov 25 2011 *)
  • PARI
    is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 4*A101790(n) - 1. - Amiram Eldar, May 13 2024

A101792 Primes of the form 8*k-1 such that 4*k-1 and 16*k-1 are also primes.

Original entry on oeis.org

23, 359, 719, 1439, 2039, 2063, 2903, 3023, 3623, 3863, 4919, 5399, 5639, 6983, 7079, 7823, 10799, 12263, 14159, 14303, 21383, 22343, 22943, 24239, 25799, 25919, 33623, 34319, 36383, 38639, 39983, 40823, 42023, 42359, 44543, 46199, 47639, 48479, 49103, 54959
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3 - 1 = 11, 8*3 - 1 = 23 and 16*3 - 1 = 47 are primes, so 23 is a term.
		

Crossrefs

Subsequence of A007522.
Subsequences: A101796, A101996.

Programs

  • Mathematica
    8 * Select[Range[10^4], And @@ PrimeQ[2^Range[2, 4]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    for(k=1,7000,if(isprime(8*k-1)&&isprime(4*k-1)&&isprime(16*k-1),print1(8*k-1,", "))) \\ Hugo Pfoertner, Sep 07 2021

Formula

a(n) = 8*A101790(n) - 1 = 2*A101791(n) + 1. - Amiram Eldar, May 13 2024

A101320 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1, 64*k-1 and 128*k-1 are all primes.

Original entry on oeis.org

15855, 31785, 267300, 280665, 399675, 561330, 946050, 990510, 1022220, 1082115, 1164735, 1283250, 1303875, 1309545, 1514880, 1669065, 1924410, 2850225, 3078675, 3092760, 3492270, 3536385, 3611205, 3920670, 4148970, 4454775
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*15855-1, 8*15855-1, 16*15855-1, 32*15855-1, 64*15855-1 and 128*15855-1 are primes, so 15855 is a term.
		

Crossrefs

Cf. A002515.
Subsequence of A005099, A005122, A101790, A101794 and A101994.

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 7]*# - 1] &] (* Amiram Eldar, May 23 2024 *)
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(4*n-1) && ispseudoprime(8*n-1) && ispseudoprime(16*n-1) && ispseudoprime(32*n-1) && ispseudoprime(64*n-1) && ispseudoprime(128*n-1), print1(n, ", "))) \\ Iain Fox, Nov 23 2017

A101236 Smallest i such that i*2^(2)-1, ..., i*2^(n+2)-1 are primes.

Original entry on oeis.org

1, 1, 3, 45, 45, 15855, 280665, 4774980, 4393585185, 6522452145, 166260770280, 4321816939440, 15939674132892510, 22654052989616460555, 22654052989616460555, 202608454566431632290
Offset: 0

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004; revised Dec 31 2004

Keywords

Comments

(2^2)*3-1=11, (2^3)*3-1=23 and (2^4)*3-1=47 are primes so 3 is the third entry.
For every x in A001122, the x-th term of this sequence and every succeeding term is divisible by x. For example 3 divides the 3rd and every succeeding term, 5 divides the 5th and every succeeding term.
The sequences of primes generated by these numbers are a type of Cunningham chain of the first kind (CC1). Since the longest known CC1 chain is of length 16, the next terms are currently unknown. - Douglas Stones (dssto1(AT)student.monash.edu.au), Mar 16 2005

Crossrefs

Extensions

More terms from Douglas Stones (dssto1(AT)student.monash.edu.au), Mar 16 2005
Showing 1-7 of 7 results.