A101818 Triangle read by rows: (1/n)*T(n,h), where T(n,h) is the array in A101817.
1, 1, 1, 1, 6, 2, 1, 21, 36, 6, 1, 60, 300, 240, 24, 1, 155, 1800, 3900, 1800, 120, 1, 378, 9030, 42000, 50400, 15120, 720, 1, 889, 40572, 357210, 882000, 670320, 141120, 5040, 1, 2040, 169400, 2610720, 11677680, 17781120, 9313920, 1451520, 40320
Offset: 1
Examples
First rows: 1 1 1 1 6 2 1 21 36 6
References
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
Programs
-
Mathematica
Table[Table[StirlingS2[n, k] (n-1)!/(n - k)!, {k, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, Jan 02 2022 *)
Formula
T(n, h) = (1/n)*C(n, h)*U(n, h), where U(n, h) is the array in A019538.
T(n, h) = Stirling2(n,h)*(n-1)!/(n-h)!. - Geoffrey Critzer, Jan 02 2022
Extensions
Offset changed to 1 by Alois P. Heinz, Jan 03 2022
Comments