A101850 A Catalan transform of Pell(n+1).
1, 2, 7, 26, 100, 392, 1555, 6218, 25006, 100988, 409162, 1661948, 6764194, 27575732, 112570675, 460058906, 1881978694, 7704907724, 31566153058, 129400608044, 530734613920, 2177792579072, 8939838222718, 36711025334948
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 2/(3*Sqrt(1-4*x)+2*x-1) )); // G. C. Greubel, Feb 18 2019 -
Mathematica
CoefficientList[Series[(1-2x+3Sqrt[1-4x])/(4-16x-2x^2),{x,0,24}],x] (* Emanuele Munarini, Apr 02 2011 *) CoefficientList[Series[2/(3*Sqrt[1-4*x]+2*x-1), {x,0,30}], x] (* or *) RecurrenceTable[{2*(n+3)*a[n+3] -4*(4*n+9)*a[n+2]+(31*n+45)*a[n+1] + 2*(2*n+3)*a[n]==0, a[0]==1, a[1]==2, a[2]==7}, a, {n, 0, 30}](* G. C. Greubel, Feb 18 2019 *)
-
Maxima
makelist(sum(binomial(2*n+1,n+2*k+1)*2^(k+1)*(2*k+1)/(n+2*k+2),k,0,n),n,0,12); /* Emanuele Munarini, Apr 02 2011 */
-
PARI
my(x='x+O('x^30)); Vec(2/(3*sqrt(1-4*x)+2*x-1)) \\ G. C. Greubel, Feb 18 2019
-
Sage
(2/(3*sqrt(1-4*x)+2*x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
Formula
G.f.: 2/(3*sqrt(1-4*x) + 2*x - 1).
a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*A000129(k+1).
G.f.: 1/(1-2*x-3*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-... (continued fraction). - Paul Barry, Jan 19 2009
From Emanuele Munarini, Apr 02 2011: (Start)
a(n) = [x^n] (1-2*x)/((1-2*x-x^2)(1-x)^(n+1)).
a(n) = Sum_{k=0..n} binomial(2*n+1, n+2*k+1)*2^(k+1)*(2*k+1)/(n+2*k+2).
Recurrence: 2*(n+3)*a(n+3) -4*(4*n+9)*a(n+2) +(31*n+45)*a(n+1) +2*(2*n+3)*a(n) = 0. (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = the upper left term in M^n, M = an infinite square production matrix as follows:
2, 3, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
a(n) ~ (1/4)*(2 + 3/sqrt(2))^n. - Vaclav Kotesovec, Oct 17 2012
Comments