cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A101866 Array read by antidiagonals: Arnoux's product T(n,k) = n * k = nk + ceiling(phi n) ceiling(phi k), where phi = (1 + sqrt(5))/2 ; m, n >= 1.

Original entry on oeis.org

5, 10, 10, 13, 20, 13, 18, 26, 26, 18, 23, 36, 34, 36, 23, 26, 46, 47, 47, 46, 26, 31, 52, 60, 65, 60, 52, 31, 34, 62, 68, 83, 83, 68, 62, 34, 39, 68, 81, 94, 106, 94, 81, 68, 39, 44, 78, 89, 112, 120, 120, 112, 89, 78, 44, 47, 88, 102, 123, 143, 136, 143, 123, 102, 88, 47, 52
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Comments

Row 1 / column 1 (given in A101868) = positions of 1 in A188009, viz.,
A188009 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ...), A101868 = (5, 10, 13, 18, 23, 26, 31, 34, 39, 44, 47, 52, 57, ...). - Clark Kimberling and John W. Layman, Mar 19 2011, corrected and edited by M. F. Hasler, Oct 12 2017
By definition, the array is symmetric, so row n = column n. Row 1 is essentially the same as A188434: T(n,1) = A101868(n) = A188434(n+1). - M. F. Hasler, Oct 12 2017
This product is commutative but is not associative and does not distribute over addition. - Peter Bala, Aug 13 2022

Examples

			   5 10 13 18  23 ...
  10 20 26 36  46
  13 26 34 47  60
  18 36 47 65  83
  23 46 60 83 106
  ...
		

Crossrefs

Cf. A101858, A101330, A101385, A101633 for similarly defined products.
Main diagonal is A101867.
First 3 rows are A101868, A101869, A101870.
Cf. A001622.

Programs

  • Mathematica
    A101866[n_, k_] := n*k + Ceiling[n*GoldenRatio]*Ceiling[k*GoldenRatio];
    Table[A101866[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
  • PARI
    T(n, k) = my(phi = (1+sqrt(5))/2); n*k + ceil(phi*n)*ceil(phi*k); \\ Michel Marcus, Mar 29 2016

A371381 Main diagonal of A219875.

Original entry on oeis.org

2, 8, 13, 25, 41, 52, 74, 89, 117, 149, 170, 208, 250, 277, 325, 356, 410, 468, 505, 569, 610, 680, 754, 801, 881, 965, 1018, 1108, 1165, 1261, 1361, 1424, 1530, 1640, 1709, 1825, 1898, 2020, 2146, 2225, 2357, 2440, 2578, 2720, 2809, 2957, 3109, 3204, 3362, 3461
Offset: 1

Views

Author

Paolo Xausa, Mar 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#^2 + Ceiling[# / GoldenRatio]^2 &, 100]
  • Python
    from math import isqrt
    def A371381(n): return (n<<1)*(n-1)+1+(q:=n+isqrt(5*n**2)>>1)*(q-(n-1<<1)) # Chai Wah Wu, Mar 21 2024

Formula

a(n) = n^2 + ceiling(n/(1 + sqrt(5))/2)^2 = n^2 + A019446(n)^2.

A371382 a(n) = n^2 + q*(q + 1), where q = floor(n*(1 + sqrt(5))/2) = A000201(n).

Original entry on oeis.org

3, 16, 29, 58, 97, 126, 181, 220, 291, 372, 427, 524, 631, 702, 825, 906, 1045, 1194, 1291, 1456, 1563, 1744, 1935, 2058, 2265, 2482, 2621, 2854, 3003, 3252, 3511, 3676, 3951, 4236, 4417, 4718, 4909, 5226, 5553, 5760, 6103, 6320, 6679, 7048, 7281, 7666, 8061, 8310
Offset: 1

Views

Author

Paolo Xausa, Mar 20 2024

Keywords

Crossrefs

Main diagonal of A295573.

Programs

  • Mathematica
    Array[#^2 + Block[{q = Floor[# * GoldenRatio]}, q * (q + 1)] &, 100]
  • Python
    from math import isqrt
    def A371382(n): return n**2+(q:=n+isqrt(5*n**2)>>1)*(q+1) # Chai Wah Wu, Mar 21 2024
Showing 1-3 of 3 results.