A101866 Array read by antidiagonals: Arnoux's product T(n,k) = n * k = nk + ceiling(phi n) ceiling(phi k), where phi = (1 + sqrt(5))/2 ; m, n >= 1.
5, 10, 10, 13, 20, 13, 18, 26, 26, 18, 23, 36, 34, 36, 23, 26, 46, 47, 47, 46, 26, 31, 52, 60, 65, 60, 52, 31, 34, 62, 68, 83, 83, 68, 62, 34, 39, 68, 81, 94, 106, 94, 81, 68, 39, 44, 78, 89, 112, 120, 120, 112, 89, 78, 44, 47, 88, 102, 123, 143, 136, 143, 123, 102, 88, 47, 52
Offset: 1
Examples
5 10 13 18 23 ... 10 20 26 36 46 13 26 34 47 60 18 36 47 65 83 23 46 60 83 106 ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (first 150 antidiagonals, flattened).
- P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (1989), 319-320.
- P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (No. 4, 1989), 319-320. [Annotated scanned copy]
Crossrefs
Programs
-
Mathematica
A101866[n_, k_] := n*k + Ceiling[n*GoldenRatio]*Ceiling[k*GoldenRatio]; Table[A101866[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
-
PARI
T(n, k) = my(phi = (1+sqrt(5))/2); n*k + ceil(phi*n)*ceil(phi*k); \\ Michel Marcus, Mar 29 2016
Comments