cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101880 Number of arrangements of the partitions of n (e.g., 111 counts for 6).

Original entry on oeis.org

1, 1, 3, 9, 35, 161, 913, 6103, 47319, 416235, 4092155, 44424095, 527511445, 6798907249, 94504286703, 1408973416617, 22426222745159, 379522092608177, 6804315177704869, 128828842646944135, 2568533750228603835, 53788282243854336411, 1180357162840624656959
Offset: 0

Views

Author

Jon Perry, Jan 28 2005

Keywords

Comments

All terms are odd. - Alois P. Heinz, Jul 10 2023

Examples

			a(3) = 9 as we have 3, 12 (2) and 111 (6).
a(4) = 35 as 4, 31 (2), 22 (2), 211 (6) and 1111 (24).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 06 2016
  • Mathematica
    Rest[ CoefficientList[ Series[ Sum[ n!x^n / Product[1 - x^k, {k, n}], {n, 20}], {x, 0, 20}], x]] (* Robert G. Wilson v, Feb 10 2005 *)
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    def A101880(n):
        return sum(number_of_partitions_length(n, k)*factorial(k) for k in (0..n))
    print([A101880(n) for n in (0..21)]) # Peter Luschny, Aug 01 2015

Formula

a(n) = Sum_{i=1..n} P(n,i)*i!, where P(n,i) is the number of partitions of n into i parts.
G.f.: Sum_{n=1..infinity} (n!*x^n / Product_{k=1..n} (1-x^k)). - Vladeta Jovovic, Jan 29 2005
G.f.: ( 1 - G(0) )/(1-x) where G(k) = 1 - (k+1)/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
a(n) ~ n! * (1 + 1/n + 2/n^2 + 5/n^3 + 16/n^4 + 60/n^5 + 253/n^6 + 1180/n^7 + 6023/n^8 + 33306/n^9 + 197719/n^10 + ...), for coefficients see A331826. - Vaclav Kotesovec, Jan 28 2020

Extensions

More terms from Vladeta Jovovic, Jan 29 2005
a(0)=1 prepended by Alois P. Heinz, Apr 06 2016